💻
Software Development
Technical Knowledges
Technical Knowledges
  • Everything anyone should know
    • Fundamental
      • Life cycle of Dependency Injection
        • When to use?
          • Transient
          • Scoped
          • Singleton
      • OOP
        • Inheritance
          • More with override in C#
            • Why need to use "virtual" keyword when we can use "new" keyword
          • How to achieve multiple inheritance in C#
          • Note
        • Polymophism
        • Encapsulation
        • Abtraction
          • Not use "override" keyword in abstract method
          • Notes
      • Data representing
        • JSON
        • XML
        • Comparation
      • Middleware
      • Status Code
      • API Styles
        • SOAP
        • REST
          • Question
        • GraphQL
        • gRPC
        • WebSocket
        • Webhook
        • Comparation
          • SOAP vs REST
          • REST vs GraphQL
          • gRPC vs REST
          • HTTP vs WebSocket
      • SDK
    • Advanced
      • Memoize
      • N+1 issues
      • Concurrency
        • Thread
          • Race Condition
          • Thread Safety
          • Critical Sections
        • Deadlock
        • Semaphore
    • Comparison
      • Architecture
        • SOA vs Microservices
        • Strong Consistency vs Eventual Consistency
      • Data structures
        • Instance vs Object
        • Field vs Property
        • Properties vs Method
        • Class vs Struct
        • const vs readoly vs static
        • Value types and Reference types
        • i++ vs ++i
        • Prototypal Inheritance vs Class Inheritance
        • Abstraction vs Interface
        • Run-time vs Compile-time
        • Overloading vs Overriding
      • Front-end
        • SSR vs SPA
        • Axios vs Fetch
      • Databases
        • Different between Function() and Store Procedure()
      • Security
        • Encoding vs Encryption vs Tokenization
      • Message Broker
        • RabbitMQ vs Kafka
      • Devops
        • Kubernetes vs Docker Swarm
        • Docker Repository vs Docker Registry
      • Cloud
      • Computer Science
        • Recursion and Iteration
      • Technology
        • .NET Core vs .NET Framework
        • Cache vs Local Storage vs Session Storage vs Cookies
      • SDLC
        • TDD vs BDD
  • Design Pattern
    • Overview
    • Creational Design Patterns
      • Abstract Factory
        • Code Example
          • C#
          • Java
          • Python
      • Builder
        • Code Example
          • C#
          • Java
          • Python
      • Factory Method
        • Code Example
          • C#
          • Java
          • Python
      • Prototype
        • Code example
          • C#
          • Java
          • Python
      • Singleton
        • Code example
          • C#
            • Naïve Singleton
            • Thread-safe Singleton
          • Java
            • Naïve Singleton (single-threaded)
            • Naïve Singleton (multithreaded)
            • Thread-safe Singleton with lazy loading
          • Python
            • Naïve Singleton
            • Thread-safe Singleton
    • Structural Design Patterns
      • Adapter
        • Code example
          • C#
          • Java
          • Python
            • Conceptual Example (via inheritance)
            • Conceptual Example (via object composition)
      • Bridge
        • Code example
          • C#
          • Java
          • Python
      • Composite
        • Code example
          • C#
          • Java
          • Python
      • Decorator
        • Code example
          • C#
          • Java
          • Python
      • Facade
        • Code example
          • C#
          • Java
          • Python
      • Flyweight
        • Code example
          • C#
          • Java
          • Python
      • Proxy
        • Code example
          • C#
          • Java
          • Python
    • Behavior Design Patterns
      • Chain of Responsibility
        • Code example
          • C#
          • Java
          • Python
      • Command
        • C#
        • Java
        • Python
      • Interpreter
        • Code example
          • C#
      • Iterator
        • Code example
          • C#
          • Java
          • Python
      • Mediator
        • Code example
          • C#
          • Java
          • Python
      • Memento
        • Code example
          • C#
          • Java
          • Python
      • Observer
        • Code example
          • C#
          • Java
          • Python
      • State
        • Code example
          • C#
          • Java
          • Python
      • Strategy
        • Code example
          • C#
          • Java
          • Python
        • Different with using abstract class
      • Template Method
        • Code example
          • C#
          • Java
          • Python
      • Visitor
        • Code example
          • C#
          • Java
          • Python
    • Use cases
      • Real-life example
    • More
      • Circuit Breaker Pattern
      • Repository Pattern
      • Unit Of Work Pattern
    • Some design patterns contradictory
  • Architect
    • Clean Architecture
    • Layered (n-tier) Architecture
    • Microservices Architecture
    • Monolithic Architecture
    • Service-Oriented Architecture (SOA)
    • Domain-Driven Design (DDD)
    • Blackboard Architecture
    • Object-Oriented Architecture
  • Microservices Design Pattern
    • Saga Pattern
      • Example
    • Strangler Fig Pattern
    • API Gateway Pattern
    • Backends For Frontends (BFF) Pattern
    • Service Discovery Pattern
    • Circuit Breaker Pattern
    • Bulk Head Pattern
    • Retry Pattern
    • Sidecar Pattern
    • Event Driven Architecture Pattern
    • CQRS (Command and Query Responsibility Segregation)
      • Event Sourcing
      • Code example
        • Basic
        • CQRS + MediatR + EDA + RabbitMQ
      • The Good, the Bad, and the Ugly
    • Configuration Externalization Pattern
  • Design and development principles
    • SOLID aka Design Principles
    • Cohesion Principles
    • Coupling principle
    • Some fundamental principles
      • Separation of Concerns
      • Persistence Ignorance
      • DRY
      • KISS
  • Authentication and Authorization Standards
    • SAML
    • OAuth
    • OIDC
    • SCIM
    • SSO
    • Tools
      • Keycloak
    • More
      • JWT
      • Access Token & Refresh Token
  • .NET TECHNOLOGY
    • .NET MVC
      • HTML Helpers
        • Extension method for HTML Helpers
      • Filters
        • Order of Filters
    • Fundamental
      • Startup file
      • Query Data
        • Linq
          • Filtering
          • Sorting
          • Projecting
          • Quantifying
          • Flattening
          • Grouping
          • Joining
          • Aggregating
          • Deferred execution vs Immediate execution
        • OData
          • Filter Expression
      • ORM
        • Entity Framework
          • Eager Loading vs Lazy Loading vs Explicit Loading
          • How to improve our entity framework core query performance
        • Dapper
        • Why Dapper faster than Entity Framework
      • Identity Server
      • Fluent Validation
      • Minimal API
      • Generic
      • IoC
        • Castle Windsor
        • Autofac
        • Ninject
      • CLR
      • Refit
      • Task Schedule
        • Hangfire
        • Quartz
      • Some notice
    • Advanced
      • Multi Thread
        • Thread pool
        • Parallel
        • Comparation
        • Code comparation
      • Caching
        • IMemoryCache
      • MediatR
      • SignalR
      • API Gateway
        • Ocelot
      • gRPC
      • Multitenancy
      • Special C# technique
        • Generic
        • Extension Method
        • Delegate
        • Lambda Expression
        • Yield
      • Jetbrain tools
        • dotTrace
        • dotMemory
        • dotPeek
      • ABP Framework
        • Multi Layered
          • Domain Layer
            • Entities
            • Repository
            • Domain Services
          • Application Layer
            • Application Services
            • Data Transfer Objects
          • Data Access
            • Entity Framework Core Integration
            • MongoDB Integration
        • Microservice Architecture
        • DDD
          • Domain Layer
            • Entities & Aggregate Roots
            • Value Objects
            • Repositories
            • Domain Services
            • Specifications
          • Application Layer
            • Application Services
            • Data Transfer Objects
            • Unit of Work
    • Tutorial Coding
      • Custom and Using Middleware in .NET CORE
      • Connect Elastic Search and MongoDB
      • Implementing the Unit of Work Pattern in Clean Architecture with .NET Core
    • ServiceStack
    • POCO
  • System Design
    • Blueprint
    • Fundamental
      • Scale from zero to millions of users
        • Single server setup
        • Database
        • Load balancer
        • Database replication
        • Cache
        • Content delivery network (CDN)
        • Stateless web tier
        • Data centers
        • Message queue
        • Logging, metrics, automation
        • Database scaling
        • Millions of users and beyond
      • A framework for system design interviews
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
        • Step 4 - Wrap up
        • Summarize
      • Back-of-the-envelope estimation
      • Design a rate limiter
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
          • Algorithms for rate limiting
            • Token bucket algorithm
            • Leaking bucket algorithm
            • Fixed window counter algorithm
            • Sliding window log algorithm
            • Sliding window counter algorithm
          • High-level architecture
        • Step 3 - Design deep dive
          • Rate limiting rules
          • Exceeding the rate limit
          • Detailed design
          • Rate limiter in a distributed environment
          • Performance optimization
          • Monitoring
        • Step 4 - Wrap up
      • Design consistent hashing
        • Consitent hashing
        • Two issues in the basic approach
        • Wrap up
      • Design key-value store
        • Understand the problem and establish the design scope
        • CAP theorem
        • System components
          • Data partition
          • Data replication
          • Consistency
          • Inconsistency resolution
          • Handling failures
          • System architecture diagram
          • Write path
          • Read path
      • Design a unique id generator in distributed systems
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
          • Multi-master replication
          • UUID
          • Ticket Server
          • Twitter snowflake approach
        • Step 3 - Design deep dive
        • Step 4 - Wrap up
      • Design a url shortener
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
          • Data model
          • Hash function
          • URL shortening deep dive
          • URL redirecting deep dive
        • Step 4 - Wrap up
      • Design a web crawler
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
          • DFS vs BFS
          • URL frontier
          • HTML Downloader
          • Robustness
          • Extensibility
          • Detect and avoid problematic content
        • Step 4 - Wrap up
    • Use cases
      • Design Youtube
      • Design Social Media App
      • Design Typehead Suggestion
      • Design Taxi Booking System
      • Design Messaging App
  • DBMS
    • Fundamental
      • ACID
      • Order Of Execution of the SQL query
      • Transaction – Concurrency Control Techniques
        • Isolation level
      • Index
        • Clustered Index vs Non-clustered index
        • Index vs Unique index
      • Built-in functions
        • String Functions
          • ASCII
          • CHAR
          • CHARINDEX
          • CONCAT
          • CONCAT_WS
          • DATALENGTH
          • DIFFERENCE
          • FORMAT
          • LEFT
          • LEN
          • LOWER
          • LTRIM
          • NCHAR
          • PATINDEX
          • QUOTENAME
          • REPLACE
          • REPLICATE
          • REVERSE
          • RIGHT
          • RTRIM
          • SOUNDEX
          • SPACE
          • STR
          • STUFF
          • SUBSTRING
          • TRANSLATE
          • TRIM
          • UNICODE
          • UPPER
        • Numeric Functions
          • ABS
          • ACOS
          • ASIN
          • ATAN
          • ATN2
          • AVG
          • CEILING
          • COUNT
          • COS
          • DEGREES
          • EXP
          • FLOOR
          • LOG
          • LOG10
          • MAX
          • MIN
          • PI
          • POWER
          • RADIANS
          • ROUND
          • SIGN
          • SIN
          • SQRT
          • SQUARE
          • SUM
          • TAN
        • Date Functions
          • CURRENT_TIMESTAMP
          • DATEADD
          • DATEDIFF
          • DATEFROMPARTS
          • DATENAME
          • DATEPART
          • DAY
          • GETDATE
          • GETUTCDATE
          • ISDATE
          • MONTH
          • SYSDATETIME
          • YEAR
        • Advance Functions
          • CASE
          • CAST
          • COALESCE
          • CONVERT
          • CURRENT_USER
          • LEAD
          • LAG
          • IIF
          • ISNULL
          • ISNUMERIC
          • NULLIF
          • SESSION_USER
          • SESSIONPROPERTY
          • SYSTEM_USER
          • USER_NAME
      • SQL Best Practice
      • Execution Plan
      • Optimize query execution
    • Advanced
      • CTE
      • Window function
      • Performance Tuning
        • Query tuning
        • Interview ques
      • DB Sharding
      • Concurrency Control
        • Optimistic lock
        • Pessimistic lock
      • Compare DELETE VS TRUNCATE
    • Comparation
      • Oracle vs SQL Server vs Postgre vs Mysql
  • Javascript
    • ES6 Techniques
      • Hoisting
      • Destructing
      • Spread Operator
      • Rest Operator
    • Basic
      • Const vs Let vs Var
      • Debounce & Throttle
      • Callback()
    • 5 ways to define a function
  • Clean code
    • Page 2
  • Search Engine
    • Elastic Search
      • Interview question
      • Code Example
    • Solr
    • IBM Watson Discovery
    • Google Cloud Search
    • Coveo Relevance Cloud
  • Cloud Service
    • Overview
    • Azure
      • Certificate
        • AZ-900
          • Describe cloud concepts
            • What is Cloud Computing?
            • Benefits of using cloud services
              • High Availability and Scalability
              • High Elasticity
              • High Reliability and Predictability
              • High Security and Governance
              • High manageability
            • IaaS vs PaaS vs SaaS
            • Cloud Deployment Models
            • CAPEX vs OPEX
          • Describe Azure architecture and services
            • Describe the core architectural components of Azure
              • Learn sandbox
              • Azure physical infrastructure
              • Azure management infrastructure
              • Create an Azure resource
            • Describe Azure compute and networking services
              • Azure Virtual Machines
              • Create an Azure Virtual Machine
              • Azure Virtual Desktop
              • Azure Containers
              • Azure Function
              • Describe application hosting options
              • Configure network access
              • Describe Azure Virtual Networking
              • Azure Virtual Private Networks
              • Azure ExpressRoute
              • Azure DNS
            • Describe Azure storage services
              • Azure storage accounts
              • Azure storage redundancy
              • Azure storage services
              • Create a storage blob
              • Identify Azure data migration options
              • Identify Azure file movement options
            • Describe Azure identity, access, and security
              • Azure directory services
              • Azure authentication methods
              • Azure external identities
              • Azure conditional access
              • Azure role-based access control
              • Zero trust model
              • Defense-in-depth
              • Microsoft Defender for Cloud
          • Describe Azure management and governance
            • Describe cost management in Azure
              • Factors that can affect costs in Azure
              • Compare the Pricing and Total Cost of Ownership calculators
              • Estimate workload costs by using the Pricing calculator
              • Compare workload costs using the TCO calculator
              • Azure Cost Management tool
            • Describe features and tools in Azure for governance and compliance
              • Azure Blueprints
              • Azure Policy
              • Purpose of resource locks
              • Configure a resource lock
              • Service Trust portal
            • Describe features and tools for managing and deploying Azure resources
              • Tools for interacting with Azure
              • Azure Arc
              • Azure Resource Manager and Azure ARM templates
            • Describe monitoring tools in Azure
              • Azure Advisor
              • Azure Service Health
              • Azure Monitor
        • SC-900
          • Describe the concepts of security, compliance, and identity
            • Describe security and compliance concepts
              • Shared responsibility model
              • Defense in depth
              • Zero Trust model
              • Encryption and hashing
              • Compliance concepts
            • Describe identity concepts
              • Authentication and authorization
              • Identity as the primary security perimeter
              • Role of the identity provider
              • Directory services and Active Directory
              • Federation
          • Describe the capabilities of Microsoft Azure Active Directory, part of Microsoft Entra
            • Describe the services and identity types of Azure AD
              • Azure Active Directory
              • Available Azure AD editions
              • Azure AD identity types
              • Types of external identities
              • Concept of hybrid identity
            • Describe the authentication capabilities of Azure AD
              • Authentication methods available in Azure AD
              • Multi-factor authentication (MFA) in Azure AD
              • Self-service password reset (SSPR) in Azure AD
              • Password protection and management capabilities of Azure AD
            • Describe the access management capabilities of Azure AD
              • Conditional Access in Azure AD
              • Benefits of Azure AD roles and role-based access control
            • Describe the identity protection and governance capabilities of Azure AD
              • Identity governance in Azure AD
              • Entitlement management and access reviews
              • Privileged identity Management
              • Azure Identity Protection
          • Describe the capabilities of Microsoft security solutions
            • Describe basic security capabilities in Azure
              • Azure DDoS protection
              • Azure Firewall
              • Web Application Firewall
              • Network segmentation in Azure
              • Azure Network Security groups
              • Azure Bastion and JIT Access
              • Describe ways Azure encrypts data
            • Describe security management capabilities of Azure
              • Cloud security posture management
              • Microsoft Defender for Cloud
              • Enhanced security of Microsoft Defender for Cloud
              • Microsoft cloud security benchmark and security baselines for Azure
            • Describe security capabilities of Microsoft Sentinel
              • SIEM and SOAR
              • How Microsoft Sentinel provides integrated threat management
              • Understand Sentinel costs
            • Describe threat protection with Microsoft 365 Defender
              • Microsoft 365 Defender services
              • Microsoft Defender for Office 365
              • Microsoft Defender for Endpoint
              • Microsoft Defender for Cloud Apps
              • Microsoft Defender for Identity
              • Microsoft 365 Defender portal
          • Describe the capabilities of Microsoft compliance solutions
            • Describe the Service Trust Portal and privacy at Microsoft
              • Service Trust Portal
              • Microsoft's privacy principles
              • Microsoft Priva
            • Describe the compliance management capabilities in Microsoft Purview
              • Microsoft Purview compliance portal
              • Compliance Manager
              • Describe use and benefits of compliance score
            • Describe information protection and data lifecycle management in Microsoft Purview
              • Know your data, protect your data, and govern your data
              • Data classification capabilities of the compliance portal
              • Sensitivity labels and policies
              • Data loss prevention
              • Retention policies and Retention labels
              • Records management
            • Describe insider risk capabilities in Microsoft Purview
              • Risk management
              • Communication compliance
              • Information barriers
            • Describe the eDiscovery and audit capabilities of Microsoft Purview
              • eDiscovery solutions in Microsoft Purview
              • Audit solutions in Microsoft Purview
            • Describe resource governance capabilities in Azure
              • Azure Policy
              • Azure Blueprints
              • Capabilities in the Microsoft Purview governance portal
        • DP-900
          • Core Concept
            • Explore core data concepts
              • Data formats
              • File storage
              • Databases
              • Transactional data processing
              • Analytical data processing
            • Explore data roles and services
              • Job roles in the world of data
              • Identify data services
          • Relational Data in Azure
            • Explore fundamental relational data concepts
              • Relational data
              • Normalization
              • SQL
              • Database objects
            • Explore relational database services in Azure
              • Azure SQL services and capabilities
              • Azure services for open-source databases
              • Exercise: Explore Azure relational database services
          • Non-relational data in Azure
            • Explore Azure Storage for non-relational data
              • Azure blob storage
              • Azure DataLake Storage Gen2
              • Azure Files
              • Azure Tables
              • Exercise: Explore Azure Storage
            • Explore fundamentals of Azure Cosmos DB
              • Azure Cosmos DB
              • Identify Azure Cosmos DB APIs
              • Exercise: Explore Azure Cosmos DB
          • Data analytics in Azure
            • Explore fundamentals of large-scale data warehousing
              • Data warehousing architecture
              • Data ingestion pipelines
              • Analytical data stores
              • Exercise: Explore data analytics in Azure with Azure Synapse Analytics
            • Explore fundamentals of real-time analytics
              • Understand batch and stream processing
              • Explore common elements of stream processing architecture
              • Azure Stream Analytics
              • Exercise: Explore Azure Stream Analytics Completed
              • Apache Spark on Microsoft Azure
              • Exercise: Explore Spark Streaming in Azure Synapse Analytics Completed
            • Explore fundamentals of data visualization
              • Power BI tools and workflow
              • Core concepts of data modeling
              • Considerations for data visualization
              • Exercise – Explore fundamentals of data visualization with Power BI Completed
        • AI-900
      • Azure Subscription
      • Azure App Service
      • Azure Dictionary B2C
      • Azure Front Door
      • Azure Traffic Manager
      • Azure Load Balancer
      • Azure KeyVault
      • API Management
      • Azure Logic Apps
      • Azure Metric and Logs
      • Azure Workbooks
      • Azure Messaging Services
      • Azure Service Fabric
      • Comparison
        • Durable Function vs Logic App
        • Storage queues vs Service Bus queues
        • Event Grid vs Service Bus
    • AWS
      • Certificate
        • CLF-C02
          • Cloud Concepts
            • Cloud Computing
            • The Deployment Models of the Cloud
            • The Five Characteristics of Cloud Computing
            • Six Advantages of Cloud Computing
            • Problems solved by the Cloud
            • Types of Cloud Computing
            • Pricing of the Cloud
            • AWS Global Infrastructure
              • AWS Regions
              • AWS Availability Zones
              • AWS Points of Presence (Edge Locations)
            • Tour of the AWS Console
            • Shared Responsibility Model diagram
          • Security & Compliance
            • AWS Shared Responsibility Model
            • DDOS
            • Network Firewall
            • Penetration Testing on AWS Cloud
            • Encryption
            • AWS Certificate Manager (ACM)
            • AWS Secrets Manager
            • AWS Artifact (not really a service)
            • Amazon GuardDuty
            • Amazon Inspector
            • AWS Config
            • AWS Macie
            • AWS Security Hub
            • Amazon Detective
            • AWS Abuse
            • Root user privileges
            • IAM Access Analyzer
            • Summary
            • Advanced Identity
              • STS
              • Cognito
              • Directory Services
              • IAM Identity Center
              • Summary
          • Cloud Technology & Services
            • IAM
              • IAM: Users & Groups
              • IAM: Permissions
              • IAM Policies inheritance
              • IAM Policies Structure
              • IAM – Password Policy
              • Multi-Factor Authentication - MFA
              • How can users access AWS?
                • AWS CLI
                • AWS SDK
              • IAM Roles for Services
              • IAM Security Tools
              • IAM Guidelines & Best Practices
              • Shared Responsibility Model for IAM
              • Summary
            • EC2
              • Overview
              • EC2 Instance Types
                • Overview
                • General Purpose
                • Compute Optimized
                • Memory Optimized
                • Storage Optimized
                • Example
              • Security Groups
              • SSH in EC2
              • EC2 Instance Purchasing Options
                • On-Demand Instances
                • Reserved Instances
                • Savings Plans
                • Spot Instances
                • Dedicated Hosts
                • Dedicated Instances
                • Capacity Reservations
                • Summary
              • EC2 Instance Storage
                • EBS
                • EBS Snapshot
                • AMI
                • EC2 Image Builder
                • EC2 Instance Store
                • EFS
                • Shared Responsibility Model for EC2 Storage
                • Amazon FSx
                • Summary
            • ELB & ASG
              • High Availability, Scalability, Elasticity
              • ELB
              • ASG
              • Summary
            • Amazon S3
              • Overview
              • Security
              • Techniques
              • Shared Responsibility Model for S3
              • AWS Snow Family
              • Summary
            • Database & Analytics
              • Overview
              • RDS & Aurora
              • Amazon ElastiCache
              • DynamoDB
              • Redshift
              • EMR
              • Amazon Athena
              • Amazon QuickSight
              • DocumentDB
              • Amazon Neptune
              • Amazon QLDB
              • Amazon Managed Blockchain
              • AWS Glue
              • DMS – Database Migration Service
              • Summary
            • Other Compute Service
              • Docker
              • ECS
              • Fargate
              • ECR
              • AWS Lamda
              • Amazon API Gateway
              • AWS Batch
              • Amazon Lightsail
              • Summary
                • Other Compute - Summary
                • Lambda Summary
            • Deploying and Managing Infrastructure
              • CloudFormation
              • CDK
              • Elastic Beanstalk
              • AWS CodeDeploy
              • AWS CodeCommit
              • AWS CodePipeline
              • AWS CodeArtifact
              • AWS CodeStar
              • AWS Cloud9
              • SSM
              • AWS OpsWorks
              • Summary
            • Global Infrastructure
              • Overview
              • Route 53
              • CloudFront
              • AWS Global Accelerator
              • AWS Outposts
              • AWS WaveLength
              • AWS Local Zones
              • Global Applications Architecture
              • Summary
            • Cloud Integration
              • Overview
              • SQS
              • Kinesis
              • SNS
              • MQ
              • Summary
            • Cloud Monitoring
              • CloudWatch
              • EventBridge
              • CloudTrail
              • X-Ray
              • CodeGuru
              • Health Dashboard
              • Summary
            • VPC
              • Overview
              • IP Addresses in AWS
              • VPC Diagram
              • Core networking
              • VPC Flow Logs
              • VPC Peering
              • VPC Endpoints
              • AWS PrivateLink (VPC Endpoint Services)
              • Site to Site VPN & Direct Connect
              • AWS Client VPN
              • Transit Gateway
              • Summary
            • Machine Learning
              • Rekognition
              • Transcribe
              • Polly
              • Translate
              • Lex & Connect
              • Comprehend
              • SageMaker
              • Forecast
              • Kendra
              • Personalize
              • Textract
              • Summary
            • Other Services
              • WorkSpaces
              • AppStream 2.0
              • IoT Core
              • Elastic Transcoder
              • AppSync
              • Amplify
              • Device Farm
              • Backup
              • Disaster Recovery Strategies
              • AWS Elastic Disaster Recovery (DRS)
              • DataSync
              • Application Discovery Service
              • Application Migration Service (MGN)
              • Migration Evaluator
              • Migration Hub
              • FIS
              • Step Functions
              • Ground Station
              • Pinpoint
          • Account Management, Billing & Support
            • Organizations
            • SCP
            • Control Tower
            • RAM
            • Service Catalog
            • Savings Plan
            • AWS Compute Optimizer
            • Billing and Costing Tools
            • Pricing Calculator
            • Tracking costs in cloud
              • Cost Explorer
            • Monitoring costs in the could
            • AWS Cost Anomaly Detection
            • AWS Service Quotas
            • Trusted Advisor
            • Support Plans
            • Summary
              • Account Best Practices
              • Billing and CostingTools
          • AWS Architecting & Ecosystem
            • General Guiding Principles
            • Well Architected Framework
              • Operational Excellence
              • Security
              • Reliability
              • Performance Efficiency
              • Cost Optimization
              • Sustainability
            • AWS CAF
            • AWS Right Sizing
            • AWS Ecosystem
      • Comparison
        • Region, Availability Zone and Edge Location in AWS
        • EBS vs EFS
    • GCP
    • OCI
    • Object Storage Server
      • MinIO
    • Comparison
      • Azure Active Directory B2C vs AWS Cognito
  • Front End
    • Basic
      • HTML
        • <ul> vs <ol>
        • <table>
      • CSS
        • Padding
        • Box Model
        • Outline
        • Text
        • Display
        • Position
        • z-index
        • Overflow
        • Float
        • Inline vs Inline-block
        • CSS Combinators
        • CSS [attribute] Selector
        • Website Layout
        • Unit
        • CSS The !important Rule
        • Flexbox
        • Comparation
          • div.classname vs div .classname
          • .classname vs .clasname #id vs .classname#id
      • JQuery
        • Syntax
        • Document
      • AJAX
    • Modern Framework
      • React
        • HOC
        • State Management
          • Redux
            • Selector
            • Middleware
              • Saga
              • Thunk
          • MobX
        • Hooks
        • Life Cycle
          • React Lifecycle Methods
          • React Lifecycle Hooks
          • Comparation
        • Signals
      • Angular
        • Directives
          • Component Directives
          • Attribute Directives
            • Built-in
            • Building an Attribute Directive
          • Structural Directives
            • Built-in
            • Custom
        • Binding
        • Components
        • Routing
      • Vue
    • Compile & Module
      • Webpack
      • Babel
    • TypeScript
      • Cheat sheet
    • Blazor
      • WebAssembly
    • UI Library
      • Formik
      • Material UI
      • Tailwind CSS
    • Security
      • Top 7 Common Frontend Security Attacks
    • Some notices
  • Microservices
    • Service Mesh
    • Service Registry
    • Service Discovery
    • Composition
    • Orchestration
    • Transformation
    • Dapr
  • Network
    • Protocols
      • Overview
      • HTTP
      • MQTT
      • AMQP
      • FTP
      • TCP
      • UDP
      • ICMP
    • OSI Model
  • Cache
    • Redis
      • What data should and should not be cached
      • Use cache in
      • Demo in .NET
    • Hazelcast
    • Memcached
  • Message Broker
    • RabbitMQ
      • Demo in .NET
      • Interview Ques
      • Use case
    • Kafka
      • Top 5 Kafka Use Case
    • ActiveMQ
    • Masstransit
  • Bash Script
    • Linux file system
    • Cheat sheet
    • 18 Most-used Linux Commands
    • Interview Question
  • Devops
    • Overview
      • What is ?
      • IaC
      • SAFe
      • Progressive Delivery
        • Blue Green Deployments
        • Canary Deployments
        • A/B Test
      • Platform Engineering
    • Azure Pipeline
    • Docker
      • What is ?
      • Docker Engine
        • Image
        • Docker file
          • Some commands
        • Container
        • Network
        • Volume
          • Additional infomation
      • Docker CLI
      • Docker Compose
        • Additional
      • Docker Security
        • Best Practice
        • Additional Information
      • Docker Swarm
      • Storing
        • Docker Registry
        • Docker Hub
      • Summarize
    • Kubernetes
      • What is ?
        • Additional
      • Kubernetes Pod
      • Replication Controllers
      • ReplicaSets and DaemonSets
        • Additional
      • Kubernetes Services
      • Deployment
        • Additional
      • Volume
      • PersistentVolumes
        • Additional
      • Configuration
        • Additional
      • StatefulSets
        • Additional
      • Downward API
      • Kubernetes internals architecture
      • Pod internal
      • ServiceAccount and Role Based Access Control
      • Network
        • Additional
      • Managing and calculating resources used for Pods
      • Automatic scaling Pods and clusters
      • Advanced scheduling
        • Taints and tolerations
        • Node affinity and Pod affinity
        • Additional
      • Adding custom resource to Kubernetes
    • Openshift
    • IaC
      • Terraform
        • Definition
        • Why chose Terraform?
        • IAC with Terraform
          • Terraform Workflow
            • Terraform Init
            • Terraform Plan
            • Terraform Apply
            • Terraform Destroy
          • Terraform Syntax
        • Terraform Architecture
          • Variable in terraform
          • Variable Type Contraint
          • Terraform Output
          • Terraform Provisioners
        • Terraform State
          • The concept
          • Local and Remote State Storage
          • Persisting Terraform State in AWS S3
          • Hand on
        • Terraform Modules
          • Accessing and Using Terraform Modules
          • Interating with Terraform Module Inputs and Outputs
          • Hand on
        • Built-in Functions and Dynamic Blocks
          • Built-in Function
          • Terraform Type Constraints (Collection & Structural)
          • Terraform Dynamic Block
          • Hand on
        • Terraform CLI
          • Terraform CLI: fmt, taint & import
          • Hand on
            • Practicing Terraform CLI commands(fmt, taint, import)
            • Using Terraform CLI Commands (workspace and state) to Manipulate a Terraform deployment
      • Ansible
    • Jenkin
    • GitOps
      • What is ?
      • Argo CD
    • Monitoring
      • Prometheus and Grafana
      • New Relic
  • Web Server
    • Apache
    • Nginx
    • IIS
  • Security
    • How to prevent crawl data
    • SQL Injection
    • OWASP
      • Web Application Security Risks
        • Broken Access Control
        • Cryptographic Failures
        • Injection
        • Insecure Design
        • Security Misconfiguration
        • Vulnerable and Outdated Components
        • Identification and Authentication Failures
        • Software and Data Integrity Failures
        • Security Logging and Monitoring Failures
        • Server-Side Request Forgery
      • API Security Risks
        • Broken Object Level Authorization
        • Broken Authentication
        • Broken Object Property Level Authorization
        • Unrestricted Resource Consumption
        • Broken Function Level Authorization
        • Unrestricted Access to Sensitive Business Flows
        • Server Side Request Forgery
        • Security Misconfiguration
        • Improper Inventory Management
        • Unsafe Consumption of APIs
    • Security headers
      • HTTP Strict Transport Security (HSTS)
      • Content Security Policy (CSP)
      • Cross Site Scripting Protection (X-XSS-Protection)
      • X-Frame-Options
      • X-Content-Type-Options
      • X-Permitted-Cross-Domain-Policies
      • Public Key Pinning (PKP)
        • What is HTTP Public Key Pinning and Why It’s Not Good to Practice
      • Expect-CT
        • The end of Expect-CT
      • Referer-Policy
      • Pragma
      • Cache-Control
        • Difference between Pragma and Cache-Control headers
      • Same-origin policy
      • Cross-origin resource sharing (CORS)
  • Data Change Capture (CDC)
    • Debezium
  • Software Development Life Cycle (SDLF)
    • Waterfall
    • V Model
    • Agile
      • Methods
        • Xtreme Programming
          • TDD
          • BDD
        • Scrum
        • Kanban
      • Question
  • Secure Software Development Framework (SSDF)
    • Page 1
  • Source Control
    • Git
    • SVN
    • TFS
  • Integration Systems
    • Stripe
    • Salesforce
    • TaxJar
    • Zendesk
  • Enterprise Service Bus (ESB)
    • Mulesoft
  • Data
    • 5 type of analytics
  • SOFTWARE QUALITY STANDARDS – ISO 5055
    • Standard
    • All about ISO 5055
  • Interview Question
    • Overview
      • Roadmap To Clearing Technical Interview
    • Technical
      • DSA
      • System Design
      • C#
      • React
    • Behavior
    • Question back to the interviewer
  • Roadmap
    • .NET
    • Java
  • English
    • Phát âm ed
    • Many vs much
    • Most vs most of vs almost vs the most
    • Quy tắc thêm s,es vào danh từ và cách phát âm s,es chuẩn xác nhất
  • Those will be seen later
    • Note
    • Interview
  • Programming Language
    • Python
      • Data structure
        • Set
    • Javascript
      • Data Structure
        • Map
    • C#
      • Data Structure
        • Value type & Reference type
        • Using statement
        • HashSet
        • Dictionary
        • Priority Queue
      • Fact
        • Understand about IEnumerable vs. IQueryable vs. ICollection vs. IList
        • 5 things you should know about enums in C#
    • Java
Powered by GitBook
On this page
  • Limitations of using ReplicaSet to create replicated stateful apps
  • StatefulSets
  • How StatefulSet works with node failures
  1. Devops
  2. Kubernetes

StatefulSets

PreviousAdditionalNextAdditional

Last updated 1 year ago

Stateless application is an application that does not store its own state, or does not store data but needs persistent storage. For example, a web server API that does not store images, or user login sessions, is a stateless app, because no matter how many times we delete our app and recreate it, it will not affect the application. affect user data. Because our data is stored through the database, the web server API only connects to the database and stores data, but it does not have its own data. Another example is the command line app, it does not need to store any data, all it needs is to output the results and does not need to save the results. The features of a stateless app will make it easier to scale.

A stateful application requires its own state, and needs to save that state, or requires data storage that requires persistent storage, which will be used by the client and other applications. For example, if it is a database, it will have its own data.

In Kubernetes we can deploy a stateful application by creating a Pod and configuring the volume for the Pod, or using PersistentVolumeClaim. But we can only create a single instance of Pod that connects to that PersistentVolumeClaim. So can ReplicaSet be used to create replicated stateful apps? What we want is to create many replicas of the Pod, and for each Pod we will use a separate PersistentVolumeClaim, to run a distributed data store application.

Limitations of using ReplicaSet to create replicated stateful apps

Because ReplicaSet creates multiple pod replicas from a Pod template, those replicated Pods are no different from other Pods except for name and IP. If we configure the volume in the Pod template, all replicated Pods will store data in the same storage.

So we cannot use a ReplicaSet and set its replicas property to run a distributed data store application. We need to use another method.

Create multiple ReplicaSets with only one Pod per ReplicaSet

We create many ReplicaSets and each ReplicaSet will have a different Pod template.

We can use this method to deploy a distributed data store application. But this is not a good way. For example, if we want to scale our application, how do we do it? The only way is to create another ReplicaSet manually, this job is not automatic at all. We chose kubernetes to run the application because we wanted everything like scaling to be automatic and easiest.

Provide stable identity for each Pod

For a statefull application, we need to identify each Pod, because Pods can be deleted and recreated at any time. When ReplicaSet replaces an old Pod with a new Pod, the newly created Pod will have a different name and different IP. . Even though our data is still there and is the same as the old Pod, for some applications, when we create a new Pod and it has a new network identity (such as an IP address), it will create many problems. So we need to use Service to identify IP for Pod, no matter how many ReplicaSets we have, we will need to create that many corresponding Services.

When we have more Services, now we want to scale up. Besides having to create a new ReplicaSet, we now need to create a new Service for the corresponding ReplicaSet, doubling the work that has to be done by hand.

So to solve the above problems, we can easily create multiple replicates of the Pod, each one will have its own identifier, and can easily scale automatically without having to do too much by hand, making it easier for us to creating a distributed data store application. Kubernetes provides us with a resource called StatefulSet.

StatefulSets

Like ReplicaSet, StatefulSet is a resource that helps us run multiple Pods with the same template by setting the replicas property, but different from ReplicaSet in that StatefulSet's Pods will be accurately identified and each will have a stable network identity. its own.

Each Pod created by StatefulSet will be assigned an index, which will be used to identify each Pod. And the name of the Pod will be set in style <statefulset name>-<index>, not random like ReplicaSet.

How StatefulSets replace a lost Pod

When a Pod managed by a StatefulSets is lost (due to being deleted by someone), the StatefulSets will create a new Pod to replace the old one similar to the ReplicaSet method, but the newly created Pod will has the same name and hostname as the old guy.

As for ReplicaSet, it will create a new Pod that is completely different from the old one.

Cách StatefulSets scale Pod

When we scale up a Pod in StatefulSets, it will create a new Pod indexed as the next number of the current index. For example, StatefulSets currently has replicas of 2, there will be 2 Pods of <pod-name>-0, <pod-name>-1, when we scale up the Pod to 3, the newly created Pod will be named <pod-name>-2.

Similarly with scale down, it will delete the Pod with the largest index. For StatefulSets, when we scale up and scale down, we can know the exact name of the Pod that will be created or deleted.

Provide separate storage for each Pod

At this point, we know how StatefulSets identifies each Pod, so what about storage? Each of our Pods needs to have its own storage, and when we scale down the number of Pods and scale them up again, the created Pod that has the same index as the old one will still retain its storage as if we did not have to create a new Pod. another storage guy.

When we scale up a Pod in StatefulSets, there will be a new Pod and a new PersistentVolumeClaims created, but when we scale down, only the Pod is deleted, the PersistentVolumeClaims is still there and not deleted. So that when we scale up again, the Pod will still be properly attached to the previous PersistentVolumeClaims so its data will remain the same.

Create a StatefulSets

Now we will try to create a StatefulSets. Create a file named kubia-statefulset.yaml with image luksa/kubia-pet , the image code is as follows:

const http = require('http');
const os = require('os');
const fs = require('fs');

const dataFile = "/var/data/kubia.txt";

function fileExists(file) {
  try {
    fs.statSync(file);
    return true;
  } catch (e) {
    return false;
  }
}

var handler = function(request, response) {
  if (request.method == 'POST') {
    var file = fs.createWriteStream(dataFile);
    file.on('open', function (fd) {
      request.pipe(file);
      console.log("New data has been received and stored.");
      response.writeHead(200);
      response.end("Data stored on pod " + os.hostname() + "\n");
    });
  } else {
    var data = fileExists(dataFile) ? fs.readFileSync(dataFile, 'utf8') : "No data posted yet";
    response.writeHead(200);
    response.write("You've hit " + os.hostname() + "\n");
    response.end("Data stored on this pod: " + data + "\n");
  }
};

var www = http.createServer(handler);
www.listen(8080);

Config of kubia-statefulset.yaml file:

apiVersion: v1
kind: Service
metadata:
  name: kubia
spec:
  clusterIP: None
  selector:
    app: kubia
  ports:
    - name: http
      port: 80

---
apiVersion: apps/v1
kind: StatefulSet
metadata:
  name: kubia
spec:
  serviceName: kubia # the name of service
  replicas: 2
  template: # pod template
    metadata:
      labels:
        app: kubia
    spec:
      containers:
        - name: kubia
          image: luksa/kubia-pet
          ports:
            - name: http
              containerPort: 8080
      volumeMounts:
        - name: data
          mountPath: /var/data
  volumeClaimTemplates: # pvc template
    - metadata:
        name: data
      spec:
        resources:
          requests:
            storage: 1Mi
        accessModes:
          - ReadWriteOnce

In this config file we will have a Headless Service and a StatefulSet named kubia. In the config of StatefulSet, we must specify the service name used to identify the network for the Pod, Pod template, and PersistentVolumeClaims template. The difference with ReplicaSet's config is that we need to declare additional templates for PersistentVolumeClaims, StatefulSet will use it to create separate PVCs for each Pod.

Create StatefulSet:

$ kubectl create -f kubia-statefulset.yaml
service "kubia" created
statefulset "kubia" created

Now let's list the Pod to see:

$ kubectl get po
NAME     READY  STATUS             RESTARTS  AGE
kubia-0  1/1    Running            0         8s
kubia-1  0/1    ContainerCreating  0         2s

We see that the Pod we created will have a name assigned to the index, now let's list the PVCs to see:

$ kubectl get pvc
NAME          STATUS  VOLUME  CAPACITY  ACCESSMODES  AGE
data-kubia-0  Bound   pv-0    0                      37s
data-kubia-1  Bound   pv-1    0                      37s

The name of PersistentVolumeClaims will be named according to the name we specify in the volumeClaimTemplate section and connected to the index. Here we have seen that each of our Pods will have its own identifier and use its own PVCs. Exactly what we need when building a distributed storage system.

Interact with the Pod using its identifier

Now we will try to interact with each individual Pod. First we use the proxy command:

$ kubectl proxy
Starting to serve on 127.0.0.1:8001

Open another terminal:

$ curl localhost:8001/api/v1/namespaces/default/pods/kubia-0/proxy/
You've hit kubia-0
Data stored on this pod: No data posted yet
$ curl -X POST -d "Hey there! This greeting was submitted to kubia-0." localhost:8001/api/v1/namespaces/default/pods/kubia-0/proxy/
Data stored on pod kubia-0
$ curl localhost:8001/api/v1/namespaces/default/pods/kubia-0/proxy/
You've hit kubia-0
Data stored on this pod: Hey there! This greeting was submitted to kubia-0.

The printed result is that we have connected to Pod kubia-0.

Now we delete the Pod to check whether the newly created Pod uses the old PVCs correctly or not.

$ kubectl delete po kubia-0
pod "kubia-0" deleted

List Pod to see how it is deleted and recreated.

$ kubectl get po
NAME     READY  STATUS       RESTARTS  AGE
kubia-0  1/1    Terminating  0         3m
kubia-1  1/1    Running      0         3m
$  kubectl get po
NAME     READY  STATUS             RESTARTS  AGE
kubia-0  0/1    ContainerCreating  0         6s
kubia-1  1/1    Running            0         4m
$ kubectl get po
NAME     READY  STATUS   RESTARTS  AGE
kubia-0  1/1    Running  0         9s
kubia-1  1/1    Running  0         4m

We see that here the new Pod we create will have the same identifier as the old Pod, that's what we want, now let's try to see if our previous data still has the same name in Pod kubia-0.

$ curl localhost:8001/api/v1/namespaces/default/pods/kubia-0/proxy/
You've hit kubia-0
Data stored on this pod: Hey there! This greeting was submitted to kubia-0.

Our data is still here, exactly what we want. As you can see, using StatefulSet will create identified Pods and have identified PVCs. So what about the network? That means how will we access each specific Pod if we do not use a proxy? In the previous articles, we used Service to interact with the Pod, and as a Service, its request will be randomly sent to the Pods behind, not exactly one Pod, we want to be able to request to exactly one Pod.

Here we will use a technique called Headless Service, as you can see in the config file above we have created a service and specified its clusterIP attribute as None . This is how we will create a Headless Service and identify addresses for each Pod.

Headless Service

For a normal ClusterIP Service, when we create that Service, it will create a Virtual IP for itself and a corresponding DNS for that VIP, and this VIP will map with the Pods behind the Service.

As for the Headless Service, when declaring the config we will specify the clusterIP: None attribute for it. When we create a Headless Service, it will not create a Virtual IP for itself, but only create a DNS. Then, it will create DNS for each Pod behind it, and map the DNS to the DNS lines of the Pod behind it. For example, kubia-0 will have the corresponding DNS as kubia-0.kubia.default.svc.cluster.local .

And we can directly access the Pod inside the cluster by calling DNS kubia-0.kubia and kubia-1.kubia if accessing the same namespace. Or use DNS kubia-0.kubia.default.svc.cluster.local and kubia-1.kubia.default.svc.cluster.local if accessing a different namespace.

Headless Service allows us to access a certain Pod directly using DNS, instead of accessing through the Service's DNS and then our request will be directed to a random Pod. We combine Headless Service with StatefulSet to give Pods a stable network identity, and because each Pod has its own index identifier, we can know exactly which Pod we need to call.

How StatefulSet works with node failures

Unlike ReplicaSet, StatefulSet will ensure that Pods with the same identifier are never created, so when a node fails. StatefulSet will not create a new Pod before making sure the old one is gone.

How Pods are removed when node fails

When a node fails, the Pods on that node will have a status of Unknown. If after a while the node does not revive, the Pod on that node will be removed, its status will be updated to Terminate.

For ReplicaSet, because its managed Pods do not have identifiers, the Pod names will not overlap, so when one of its Pods has a status of Terminate, it will create a new one, and when the new one is created After that, regardless of whether the old person is terminated or not, it will be deleted from the cluster.

As for StatefulSet, because Pod has an identifier, when a new Pod is created it will have the same name as the old Pod, so when a Pod is located on a failed node and has a status of Terminated, StatefulSet will still not create a new Pod until it is sure. Apparently the Pod has been completely deleted. But because our node has died, it cannot report back to the kubernetes master whether the Pod has been successfully deleted or not, so the Pod will remain in Terminate state forever, at this point we need to delete the Pod. go by hand.

Simulate a node dying

Now we will look at an example to make it easier to understand. In this example we will have 3 VMs located on GCP, we will ssh into one and simulate that VM dying:

$ gcloud compute ssh gke-kubia-default-pool-32a2cac8-m0g1
$ sudo ifconfig eth0 down

Now we check the status of 3 workers:

$ kubectl get node
NAME                                  STATUS    AGE  VERSION
gke-kubia-default-pool-32a2cac8-596v  Ready     16m  v1.6.2
gke-kubia-default-pool-32a2cac8-m0g1  NotReady  16m  v1.6.2
gke-kubia-default-pool-32a2cac8-sgl7  Ready     16m  v1.6.2

We will see a node changing the status to NotReady. Now let's list the pods to try:

$ kubectl get po
NAME     READY  STATUS   RESTARTS AGE
kubia-0  1/1    Unknown  0        15m
kubia-1  1/1    Running  0        14m
kubia-2  1/1    Running  0        13m

As you can see, Pod's status is now Unknown. After a few minutes when we describe the pod, we will see the Pod's status change to Terminated.

$ kubectl describe po kubia-0
Name:      kubia-0
Namespace: default
Node:      gke-kubia-default-pool-32a2cac8-m0g1/10.132.0.2
...
Status:    Terminating (expires Tue, 23 May 2017 15:06:09 +0200)
Reason:    NodeLost
Message:   Node gke-kubia-default-pool-32a2cac8-m0g1 which was running pod kubia-0 is unresponsive

Now, in order for the Pod to be replaced, we must delete the Pod manually, but because our node is dead, the normal delete command will not run, we need to use:

$ kubectl delete po kubia-0 --force --grace-period 0

Then, when we list the pods, we will see that a new pod will be created:

$ kubectl get po
NAME     READY  STATUS             RESTARTS  AGE
kubia-0  1/1    ContainerCreating  0         21m
kubia-1  1/1    Running            0         20m
kubia-2  1/1    Running            0         19m

StatefulSets does that by separating storage from Pods using that we talked about in lesson 7. StatefulSets will create PersistentVolumeClaims for each Pod and attach it to each corresponding Pod.

PersistentVolumeClaims