💻
Software Development
Technical Knowledges
Technical Knowledges
  • Everything anyone should know
    • Fundamental
      • Life cycle of Dependency Injection
        • When to use?
          • Transient
          • Scoped
          • Singleton
      • OOP
        • Inheritance
          • More with override in C#
            • Why need to use "virtual" keyword when we can use "new" keyword
          • How to achieve multiple inheritance in C#
          • Note
        • Polymophism
        • Encapsulation
        • Abtraction
          • Not use "override" keyword in abstract method
          • Notes
      • Data representing
        • JSON
        • XML
        • Comparation
      • Middleware
      • Status Code
      • API Styles
        • SOAP
        • REST
          • Question
        • GraphQL
        • gRPC
        • WebSocket
        • Webhook
        • Comparation
          • SOAP vs REST
          • REST vs GraphQL
          • gRPC vs REST
          • HTTP vs WebSocket
      • SDK
    • Advanced
      • Memoize
      • N+1 issues
      • Concurrency
        • Thread
          • Race Condition
          • Thread Safety
          • Critical Sections
        • Deadlock
        • Semaphore
    • Comparison
      • Architecture
        • SOA vs Microservices
        • Strong Consistency vs Eventual Consistency
      • Data structures
        • Instance vs Object
        • Field vs Property
        • Properties vs Method
        • Class vs Struct
        • const vs readoly vs static
        • Value types and Reference types
        • i++ vs ++i
        • Prototypal Inheritance vs Class Inheritance
        • Abstraction vs Interface
        • Run-time vs Compile-time
        • Overloading vs Overriding
      • Front-end
        • SSR vs SPA
        • Axios vs Fetch
      • Databases
        • Different between Function() and Store Procedure()
      • Security
        • Encoding vs Encryption vs Tokenization
      • Message Broker
        • RabbitMQ vs Kafka
      • Devops
        • Kubernetes vs Docker Swarm
        • Docker Repository vs Docker Registry
      • Cloud
      • Computer Science
        • Recursion and Iteration
      • Technology
        • .NET Core vs .NET Framework
        • Cache vs Local Storage vs Session Storage vs Cookies
      • SDLC
        • TDD vs BDD
  • Design Pattern
    • Overview
    • Creational Design Patterns
      • Abstract Factory
        • Code Example
          • C#
          • Java
          • Python
      • Builder
        • Code Example
          • C#
          • Java
          • Python
      • Factory Method
        • Code Example
          • C#
          • Java
          • Python
      • Prototype
        • Code example
          • C#
          • Java
          • Python
      • Singleton
        • Code example
          • C#
            • Naïve Singleton
            • Thread-safe Singleton
          • Java
            • Naïve Singleton (single-threaded)
            • Naïve Singleton (multithreaded)
            • Thread-safe Singleton with lazy loading
          • Python
            • Naïve Singleton
            • Thread-safe Singleton
    • Structural Design Patterns
      • Adapter
        • Code example
          • C#
          • Java
          • Python
            • Conceptual Example (via inheritance)
            • Conceptual Example (via object composition)
      • Bridge
        • Code example
          • C#
          • Java
          • Python
      • Composite
        • Code example
          • C#
          • Java
          • Python
      • Decorator
        • Code example
          • C#
          • Java
          • Python
      • Facade
        • Code example
          • C#
          • Java
          • Python
      • Flyweight
        • Code example
          • C#
          • Java
          • Python
      • Proxy
        • Code example
          • C#
          • Java
          • Python
    • Behavior Design Patterns
      • Chain of Responsibility
        • Code example
          • C#
          • Java
          • Python
      • Command
        • C#
        • Java
        • Python
      • Interpreter
        • Code example
          • C#
      • Iterator
        • Code example
          • C#
          • Java
          • Python
      • Mediator
        • Code example
          • C#
          • Java
          • Python
      • Memento
        • Code example
          • C#
          • Java
          • Python
      • Observer
        • Code example
          • C#
          • Java
          • Python
      • State
        • Code example
          • C#
          • Java
          • Python
      • Strategy
        • Code example
          • C#
          • Java
          • Python
        • Different with using abstract class
      • Template Method
        • Code example
          • C#
          • Java
          • Python
      • Visitor
        • Code example
          • C#
          • Java
          • Python
    • Use cases
      • Real-life example
    • More
      • Circuit Breaker Pattern
      • Repository Pattern
      • Unit Of Work Pattern
    • Some design patterns contradictory
  • Architect
    • Clean Architecture
    • Layered (n-tier) Architecture
    • Microservices Architecture
    • Monolithic Architecture
    • Service-Oriented Architecture (SOA)
    • Domain-Driven Design (DDD)
    • Blackboard Architecture
    • Object-Oriented Architecture
  • Microservices Design Pattern
    • Saga Pattern
      • Example
    • Strangler Fig Pattern
    • API Gateway Pattern
    • Backends For Frontends (BFF) Pattern
    • Service Discovery Pattern
    • Circuit Breaker Pattern
    • Bulk Head Pattern
    • Retry Pattern
    • Sidecar Pattern
    • Event Driven Architecture Pattern
    • CQRS (Command and Query Responsibility Segregation)
      • Event Sourcing
      • Code example
        • Basic
        • CQRS + MediatR + EDA + RabbitMQ
      • The Good, the Bad, and the Ugly
    • Configuration Externalization Pattern
  • Design and development principles
    • SOLID aka Design Principles
    • Cohesion Principles
    • Coupling principle
    • Some fundamental principles
      • Separation of Concerns
      • Persistence Ignorance
      • DRY
      • KISS
  • Authentication and Authorization Standards
    • SAML
    • OAuth
    • OIDC
    • SCIM
    • SSO
    • Tools
      • Keycloak
    • More
      • JWT
      • Access Token & Refresh Token
  • .NET TECHNOLOGY
    • .NET MVC
      • HTML Helpers
        • Extension method for HTML Helpers
      • Filters
        • Order of Filters
    • Fundamental
      • Startup file
      • Query Data
        • Linq
          • Filtering
          • Sorting
          • Projecting
          • Quantifying
          • Flattening
          • Grouping
          • Joining
          • Aggregating
          • Deferred execution vs Immediate execution
        • OData
          • Filter Expression
      • ORM
        • Entity Framework
          • Eager Loading vs Lazy Loading vs Explicit Loading
          • How to improve our entity framework core query performance
        • Dapper
        • Why Dapper faster than Entity Framework
      • Identity Server
      • Fluent Validation
      • Minimal API
      • Generic
      • IoC
        • Castle Windsor
        • Autofac
        • Ninject
      • CLR
      • Refit
      • Task Schedule
        • Hangfire
        • Quartz
      • Some notice
    • Advanced
      • Multi Thread
        • Thread pool
        • Parallel
        • Comparation
        • Code comparation
      • Caching
        • IMemoryCache
      • MediatR
      • SignalR
      • API Gateway
        • Ocelot
      • gRPC
      • Multitenancy
      • Special C# technique
        • Generic
        • Extension Method
        • Delegate
        • Lambda Expression
        • Yield
      • Jetbrain tools
        • dotTrace
        • dotMemory
        • dotPeek
      • ABP Framework
        • Multi Layered
          • Domain Layer
            • Entities
            • Repository
            • Domain Services
          • Application Layer
            • Application Services
            • Data Transfer Objects
          • Data Access
            • Entity Framework Core Integration
            • MongoDB Integration
        • Microservice Architecture
        • DDD
          • Domain Layer
            • Entities & Aggregate Roots
            • Value Objects
            • Repositories
            • Domain Services
            • Specifications
          • Application Layer
            • Application Services
            • Data Transfer Objects
            • Unit of Work
    • Tutorial Coding
      • Custom and Using Middleware in .NET CORE
      • Connect Elastic Search and MongoDB
      • Implementing the Unit of Work Pattern in Clean Architecture with .NET Core
    • ServiceStack
    • POCO
  • System Design
    • Blueprint
    • Fundamental
      • Scale from zero to millions of users
        • Single server setup
        • Database
        • Load balancer
        • Database replication
        • Cache
        • Content delivery network (CDN)
        • Stateless web tier
        • Data centers
        • Message queue
        • Logging, metrics, automation
        • Database scaling
        • Millions of users and beyond
      • A framework for system design interviews
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
        • Step 4 - Wrap up
        • Summarize
      • Back-of-the-envelope estimation
      • Design a rate limiter
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
          • Algorithms for rate limiting
            • Token bucket algorithm
            • Leaking bucket algorithm
            • Fixed window counter algorithm
            • Sliding window log algorithm
            • Sliding window counter algorithm
          • High-level architecture
        • Step 3 - Design deep dive
          • Rate limiting rules
          • Exceeding the rate limit
          • Detailed design
          • Rate limiter in a distributed environment
          • Performance optimization
          • Monitoring
        • Step 4 - Wrap up
      • Design consistent hashing
        • Consitent hashing
        • Two issues in the basic approach
        • Wrap up
      • Design key-value store
        • Understand the problem and establish the design scope
        • CAP theorem
        • System components
          • Data partition
          • Data replication
          • Consistency
          • Inconsistency resolution
          • Handling failures
          • System architecture diagram
          • Write path
          • Read path
      • Design a unique id generator in distributed systems
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
          • Multi-master replication
          • UUID
          • Ticket Server
          • Twitter snowflake approach
        • Step 3 - Design deep dive
        • Step 4 - Wrap up
      • Design a url shortener
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
          • Data model
          • Hash function
          • URL shortening deep dive
          • URL redirecting deep dive
        • Step 4 - Wrap up
      • Design a web crawler
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
          • DFS vs BFS
          • URL frontier
          • HTML Downloader
          • Robustness
          • Extensibility
          • Detect and avoid problematic content
        • Step 4 - Wrap up
    • Use cases
      • Design Youtube
      • Design Social Media App
      • Design Typehead Suggestion
      • Design Taxi Booking System
      • Design Messaging App
  • DBMS
    • Fundamental
      • ACID
      • Order Of Execution of the SQL query
      • Transaction – Concurrency Control Techniques
        • Isolation level
      • Index
        • Clustered Index vs Non-clustered index
        • Index vs Unique index
      • Built-in functions
        • String Functions
          • ASCII
          • CHAR
          • CHARINDEX
          • CONCAT
          • CONCAT_WS
          • DATALENGTH
          • DIFFERENCE
          • FORMAT
          • LEFT
          • LEN
          • LOWER
          • LTRIM
          • NCHAR
          • PATINDEX
          • QUOTENAME
          • REPLACE
          • REPLICATE
          • REVERSE
          • RIGHT
          • RTRIM
          • SOUNDEX
          • SPACE
          • STR
          • STUFF
          • SUBSTRING
          • TRANSLATE
          • TRIM
          • UNICODE
          • UPPER
        • Numeric Functions
          • ABS
          • ACOS
          • ASIN
          • ATAN
          • ATN2
          • AVG
          • CEILING
          • COUNT
          • COS
          • DEGREES
          • EXP
          • FLOOR
          • LOG
          • LOG10
          • MAX
          • MIN
          • PI
          • POWER
          • RADIANS
          • ROUND
          • SIGN
          • SIN
          • SQRT
          • SQUARE
          • SUM
          • TAN
        • Date Functions
          • CURRENT_TIMESTAMP
          • DATEADD
          • DATEDIFF
          • DATEFROMPARTS
          • DATENAME
          • DATEPART
          • DAY
          • GETDATE
          • GETUTCDATE
          • ISDATE
          • MONTH
          • SYSDATETIME
          • YEAR
        • Advance Functions
          • CASE
          • CAST
          • COALESCE
          • CONVERT
          • CURRENT_USER
          • LEAD
          • LAG
          • IIF
          • ISNULL
          • ISNUMERIC
          • NULLIF
          • SESSION_USER
          • SESSIONPROPERTY
          • SYSTEM_USER
          • USER_NAME
      • SQL Best Practice
      • Execution Plan
      • Optimize query execution
    • Advanced
      • CTE
      • Window function
      • Performance Tuning
        • Query tuning
        • Interview ques
      • DB Sharding
      • Concurrency Control
        • Optimistic lock
        • Pessimistic lock
      • Compare DELETE VS TRUNCATE
    • Comparation
      • Oracle vs SQL Server vs Postgre vs Mysql
  • Javascript
    • ES6 Techniques
      • Hoisting
      • Destructing
      • Spread Operator
      • Rest Operator
    • Basic
      • Const vs Let vs Var
      • Debounce & Throttle
      • Callback()
    • 5 ways to define a function
  • Clean code
    • Page 2
  • Search Engine
    • Elastic Search
      • Interview question
      • Code Example
    • Solr
    • IBM Watson Discovery
    • Google Cloud Search
    • Coveo Relevance Cloud
  • Cloud Service
    • Overview
    • Azure
      • Certificate
        • AZ-900
          • Describe cloud concepts
            • What is Cloud Computing?
            • Benefits of using cloud services
              • High Availability and Scalability
              • High Elasticity
              • High Reliability and Predictability
              • High Security and Governance
              • High manageability
            • IaaS vs PaaS vs SaaS
            • Cloud Deployment Models
            • CAPEX vs OPEX
          • Describe Azure architecture and services
            • Describe the core architectural components of Azure
              • Learn sandbox
              • Azure physical infrastructure
              • Azure management infrastructure
              • Create an Azure resource
            • Describe Azure compute and networking services
              • Azure Virtual Machines
              • Create an Azure Virtual Machine
              • Azure Virtual Desktop
              • Azure Containers
              • Azure Function
              • Describe application hosting options
              • Configure network access
              • Describe Azure Virtual Networking
              • Azure Virtual Private Networks
              • Azure ExpressRoute
              • Azure DNS
            • Describe Azure storage services
              • Azure storage accounts
              • Azure storage redundancy
              • Azure storage services
              • Create a storage blob
              • Identify Azure data migration options
              • Identify Azure file movement options
            • Describe Azure identity, access, and security
              • Azure directory services
              • Azure authentication methods
              • Azure external identities
              • Azure conditional access
              • Azure role-based access control
              • Zero trust model
              • Defense-in-depth
              • Microsoft Defender for Cloud
          • Describe Azure management and governance
            • Describe cost management in Azure
              • Factors that can affect costs in Azure
              • Compare the Pricing and Total Cost of Ownership calculators
              • Estimate workload costs by using the Pricing calculator
              • Compare workload costs using the TCO calculator
              • Azure Cost Management tool
            • Describe features and tools in Azure for governance and compliance
              • Azure Blueprints
              • Azure Policy
              • Purpose of resource locks
              • Configure a resource lock
              • Service Trust portal
            • Describe features and tools for managing and deploying Azure resources
              • Tools for interacting with Azure
              • Azure Arc
              • Azure Resource Manager and Azure ARM templates
            • Describe monitoring tools in Azure
              • Azure Advisor
              • Azure Service Health
              • Azure Monitor
        • SC-900
          • Describe the concepts of security, compliance, and identity
            • Describe security and compliance concepts
              • Shared responsibility model
              • Defense in depth
              • Zero Trust model
              • Encryption and hashing
              • Compliance concepts
            • Describe identity concepts
              • Authentication and authorization
              • Identity as the primary security perimeter
              • Role of the identity provider
              • Directory services and Active Directory
              • Federation
          • Describe the capabilities of Microsoft Azure Active Directory, part of Microsoft Entra
            • Describe the services and identity types of Azure AD
              • Azure Active Directory
              • Available Azure AD editions
              • Azure AD identity types
              • Types of external identities
              • Concept of hybrid identity
            • Describe the authentication capabilities of Azure AD
              • Authentication methods available in Azure AD
              • Multi-factor authentication (MFA) in Azure AD
              • Self-service password reset (SSPR) in Azure AD
              • Password protection and management capabilities of Azure AD
            • Describe the access management capabilities of Azure AD
              • Conditional Access in Azure AD
              • Benefits of Azure AD roles and role-based access control
            • Describe the identity protection and governance capabilities of Azure AD
              • Identity governance in Azure AD
              • Entitlement management and access reviews
              • Privileged identity Management
              • Azure Identity Protection
          • Describe the capabilities of Microsoft security solutions
            • Describe basic security capabilities in Azure
              • Azure DDoS protection
              • Azure Firewall
              • Web Application Firewall
              • Network segmentation in Azure
              • Azure Network Security groups
              • Azure Bastion and JIT Access
              • Describe ways Azure encrypts data
            • Describe security management capabilities of Azure
              • Cloud security posture management
              • Microsoft Defender for Cloud
              • Enhanced security of Microsoft Defender for Cloud
              • Microsoft cloud security benchmark and security baselines for Azure
            • Describe security capabilities of Microsoft Sentinel
              • SIEM and SOAR
              • How Microsoft Sentinel provides integrated threat management
              • Understand Sentinel costs
            • Describe threat protection with Microsoft 365 Defender
              • Microsoft 365 Defender services
              • Microsoft Defender for Office 365
              • Microsoft Defender for Endpoint
              • Microsoft Defender for Cloud Apps
              • Microsoft Defender for Identity
              • Microsoft 365 Defender portal
          • Describe the capabilities of Microsoft compliance solutions
            • Describe the Service Trust Portal and privacy at Microsoft
              • Service Trust Portal
              • Microsoft's privacy principles
              • Microsoft Priva
            • Describe the compliance management capabilities in Microsoft Purview
              • Microsoft Purview compliance portal
              • Compliance Manager
              • Describe use and benefits of compliance score
            • Describe information protection and data lifecycle management in Microsoft Purview
              • Know your data, protect your data, and govern your data
              • Data classification capabilities of the compliance portal
              • Sensitivity labels and policies
              • Data loss prevention
              • Retention policies and Retention labels
              • Records management
            • Describe insider risk capabilities in Microsoft Purview
              • Risk management
              • Communication compliance
              • Information barriers
            • Describe the eDiscovery and audit capabilities of Microsoft Purview
              • eDiscovery solutions in Microsoft Purview
              • Audit solutions in Microsoft Purview
            • Describe resource governance capabilities in Azure
              • Azure Policy
              • Azure Blueprints
              • Capabilities in the Microsoft Purview governance portal
        • DP-900
          • Core Concept
            • Explore core data concepts
              • Data formats
              • File storage
              • Databases
              • Transactional data processing
              • Analytical data processing
            • Explore data roles and services
              • Job roles in the world of data
              • Identify data services
          • Relational Data in Azure
            • Explore fundamental relational data concepts
              • Relational data
              • Normalization
              • SQL
              • Database objects
            • Explore relational database services in Azure
              • Azure SQL services and capabilities
              • Azure services for open-source databases
              • Exercise: Explore Azure relational database services
          • Non-relational data in Azure
            • Explore Azure Storage for non-relational data
              • Azure blob storage
              • Azure DataLake Storage Gen2
              • Azure Files
              • Azure Tables
              • Exercise: Explore Azure Storage
            • Explore fundamentals of Azure Cosmos DB
              • Azure Cosmos DB
              • Identify Azure Cosmos DB APIs
              • Exercise: Explore Azure Cosmos DB
          • Data analytics in Azure
            • Explore fundamentals of large-scale data warehousing
              • Data warehousing architecture
              • Data ingestion pipelines
              • Analytical data stores
              • Exercise: Explore data analytics in Azure with Azure Synapse Analytics
            • Explore fundamentals of real-time analytics
              • Understand batch and stream processing
              • Explore common elements of stream processing architecture
              • Azure Stream Analytics
              • Exercise: Explore Azure Stream Analytics Completed
              • Apache Spark on Microsoft Azure
              • Exercise: Explore Spark Streaming in Azure Synapse Analytics Completed
            • Explore fundamentals of data visualization
              • Power BI tools and workflow
              • Core concepts of data modeling
              • Considerations for data visualization
              • Exercise – Explore fundamentals of data visualization with Power BI Completed
        • AI-900
      • Azure Subscription
      • Azure App Service
      • Azure Dictionary B2C
      • Azure Front Door
      • Azure Traffic Manager
      • Azure Load Balancer
      • Azure KeyVault
      • API Management
      • Azure Logic Apps
      • Azure Metric and Logs
      • Azure Workbooks
      • Azure Messaging Services
      • Azure Service Fabric
      • Comparison
        • Durable Function vs Logic App
        • Storage queues vs Service Bus queues
        • Event Grid vs Service Bus
    • AWS
      • Certificate
        • CLF-C02
          • Cloud Concepts
            • Cloud Computing
            • The Deployment Models of the Cloud
            • The Five Characteristics of Cloud Computing
            • Six Advantages of Cloud Computing
            • Problems solved by the Cloud
            • Types of Cloud Computing
            • Pricing of the Cloud
            • AWS Global Infrastructure
              • AWS Regions
              • AWS Availability Zones
              • AWS Points of Presence (Edge Locations)
            • Tour of the AWS Console
            • Shared Responsibility Model diagram
          • Security & Compliance
            • AWS Shared Responsibility Model
            • DDOS
            • Network Firewall
            • Penetration Testing on AWS Cloud
            • Encryption
            • AWS Certificate Manager (ACM)
            • AWS Secrets Manager
            • AWS Artifact (not really a service)
            • Amazon GuardDuty
            • Amazon Inspector
            • AWS Config
            • AWS Macie
            • AWS Security Hub
            • Amazon Detective
            • AWS Abuse
            • Root user privileges
            • IAM Access Analyzer
            • Summary
            • Advanced Identity
              • STS
              • Cognito
              • Directory Services
              • IAM Identity Center
              • Summary
          • Cloud Technology & Services
            • IAM
              • IAM: Users & Groups
              • IAM: Permissions
              • IAM Policies inheritance
              • IAM Policies Structure
              • IAM – Password Policy
              • Multi-Factor Authentication - MFA
              • How can users access AWS?
                • AWS CLI
                • AWS SDK
              • IAM Roles for Services
              • IAM Security Tools
              • IAM Guidelines & Best Practices
              • Shared Responsibility Model for IAM
              • Summary
            • EC2
              • Overview
              • EC2 Instance Types
                • Overview
                • General Purpose
                • Compute Optimized
                • Memory Optimized
                • Storage Optimized
                • Example
              • Security Groups
              • SSH in EC2
              • EC2 Instance Purchasing Options
                • On-Demand Instances
                • Reserved Instances
                • Savings Plans
                • Spot Instances
                • Dedicated Hosts
                • Dedicated Instances
                • Capacity Reservations
                • Summary
              • EC2 Instance Storage
                • EBS
                • EBS Snapshot
                • AMI
                • EC2 Image Builder
                • EC2 Instance Store
                • EFS
                • Shared Responsibility Model for EC2 Storage
                • Amazon FSx
                • Summary
            • ELB & ASG
              • High Availability, Scalability, Elasticity
              • ELB
              • ASG
              • Summary
            • Amazon S3
              • Overview
              • Security
              • Techniques
              • Shared Responsibility Model for S3
              • AWS Snow Family
              • Summary
            • Database & Analytics
              • Overview
              • RDS & Aurora
              • Amazon ElastiCache
              • DynamoDB
              • Redshift
              • EMR
              • Amazon Athena
              • Amazon QuickSight
              • DocumentDB
              • Amazon Neptune
              • Amazon QLDB
              • Amazon Managed Blockchain
              • AWS Glue
              • DMS – Database Migration Service
              • Summary
            • Other Compute Service
              • Docker
              • ECS
              • Fargate
              • ECR
              • AWS Lamda
              • Amazon API Gateway
              • AWS Batch
              • Amazon Lightsail
              • Summary
                • Other Compute - Summary
                • Lambda Summary
            • Deploying and Managing Infrastructure
              • CloudFormation
              • CDK
              • Elastic Beanstalk
              • AWS CodeDeploy
              • AWS CodeCommit
              • AWS CodePipeline
              • AWS CodeArtifact
              • AWS CodeStar
              • AWS Cloud9
              • SSM
              • AWS OpsWorks
              • Summary
            • Global Infrastructure
              • Overview
              • Route 53
              • CloudFront
              • AWS Global Accelerator
              • AWS Outposts
              • AWS WaveLength
              • AWS Local Zones
              • Global Applications Architecture
              • Summary
            • Cloud Integration
              • Overview
              • SQS
              • Kinesis
              • SNS
              • MQ
              • Summary
            • Cloud Monitoring
              • CloudWatch
              • EventBridge
              • CloudTrail
              • X-Ray
              • CodeGuru
              • Health Dashboard
              • Summary
            • VPC
              • Overview
              • IP Addresses in AWS
              • VPC Diagram
              • Core networking
              • VPC Flow Logs
              • VPC Peering
              • VPC Endpoints
              • AWS PrivateLink (VPC Endpoint Services)
              • Site to Site VPN & Direct Connect
              • AWS Client VPN
              • Transit Gateway
              • Summary
            • Machine Learning
              • Rekognition
              • Transcribe
              • Polly
              • Translate
              • Lex & Connect
              • Comprehend
              • SageMaker
              • Forecast
              • Kendra
              • Personalize
              • Textract
              • Summary
            • Other Services
              • WorkSpaces
              • AppStream 2.0
              • IoT Core
              • Elastic Transcoder
              • AppSync
              • Amplify
              • Device Farm
              • Backup
              • Disaster Recovery Strategies
              • AWS Elastic Disaster Recovery (DRS)
              • DataSync
              • Application Discovery Service
              • Application Migration Service (MGN)
              • Migration Evaluator
              • Migration Hub
              • FIS
              • Step Functions
              • Ground Station
              • Pinpoint
          • Account Management, Billing & Support
            • Organizations
            • SCP
            • Control Tower
            • RAM
            • Service Catalog
            • Savings Plan
            • AWS Compute Optimizer
            • Billing and Costing Tools
            • Pricing Calculator
            • Tracking costs in cloud
              • Cost Explorer
            • Monitoring costs in the could
            • AWS Cost Anomaly Detection
            • AWS Service Quotas
            • Trusted Advisor
            • Support Plans
            • Summary
              • Account Best Practices
              • Billing and CostingTools
          • AWS Architecting & Ecosystem
            • General Guiding Principles
            • Well Architected Framework
              • Operational Excellence
              • Security
              • Reliability
              • Performance Efficiency
              • Cost Optimization
              • Sustainability
            • AWS CAF
            • AWS Right Sizing
            • AWS Ecosystem
      • Comparison
        • Region, Availability Zone and Edge Location in AWS
        • EBS vs EFS
    • GCP
    • OCI
    • Object Storage Server
      • MinIO
    • Comparison
      • Azure Active Directory B2C vs AWS Cognito
  • Front End
    • Basic
      • HTML
        • <ul> vs <ol>
        • <table>
      • CSS
        • Padding
        • Box Model
        • Outline
        • Text
        • Display
        • Position
        • z-index
        • Overflow
        • Float
        • Inline vs Inline-block
        • CSS Combinators
        • CSS [attribute] Selector
        • Website Layout
        • Unit
        • CSS The !important Rule
        • Flexbox
        • Comparation
          • div.classname vs div .classname
          • .classname vs .clasname #id vs .classname#id
      • JQuery
        • Syntax
        • Document
      • AJAX
    • Modern Framework
      • React
        • HOC
        • State Management
          • Redux
            • Selector
            • Middleware
              • Saga
              • Thunk
          • MobX
        • Hooks
        • Life Cycle
          • React Lifecycle Methods
          • React Lifecycle Hooks
          • Comparation
        • Signals
      • Angular
        • Directives
          • Component Directives
          • Attribute Directives
            • Built-in
            • Building an Attribute Directive
          • Structural Directives
            • Built-in
            • Custom
        • Binding
        • Components
        • Routing
      • Vue
    • Compile & Module
      • Webpack
      • Babel
    • TypeScript
      • Cheat sheet
    • Blazor
      • WebAssembly
    • UI Library
      • Formik
      • Material UI
      • Tailwind CSS
    • Security
      • Top 7 Common Frontend Security Attacks
    • Some notices
  • Microservices
    • Service Mesh
    • Service Registry
    • Service Discovery
    • Composition
    • Orchestration
    • Transformation
    • Dapr
  • Network
    • Protocols
      • Overview
      • HTTP
      • MQTT
      • AMQP
      • FTP
      • TCP
      • UDP
      • ICMP
    • OSI Model
  • Cache
    • Redis
      • What data should and should not be cached
      • Use cache in
      • Demo in .NET
    • Hazelcast
    • Memcached
  • Message Broker
    • RabbitMQ
      • Demo in .NET
      • Interview Ques
      • Use case
    • Kafka
      • Top 5 Kafka Use Case
    • ActiveMQ
    • Masstransit
  • Bash Script
    • Linux file system
    • Cheat sheet
    • 18 Most-used Linux Commands
    • Interview Question
  • Devops
    • Overview
      • What is ?
      • IaC
      • SAFe
      • Progressive Delivery
        • Blue Green Deployments
        • Canary Deployments
        • A/B Test
      • Platform Engineering
    • Azure Pipeline
    • Docker
      • What is ?
      • Docker Engine
        • Image
        • Docker file
          • Some commands
        • Container
        • Network
        • Volume
          • Additional infomation
      • Docker CLI
      • Docker Compose
        • Additional
      • Docker Security
        • Best Practice
        • Additional Information
      • Docker Swarm
      • Storing
        • Docker Registry
        • Docker Hub
      • Summarize
    • Kubernetes
      • What is ?
        • Additional
      • Kubernetes Pod
      • Replication Controllers
      • ReplicaSets and DaemonSets
        • Additional
      • Kubernetes Services
      • Deployment
        • Additional
      • Volume
      • PersistentVolumes
        • Additional
      • Configuration
        • Additional
      • StatefulSets
        • Additional
      • Downward API
      • Kubernetes internals architecture
      • Pod internal
      • ServiceAccount and Role Based Access Control
      • Network
        • Additional
      • Managing and calculating resources used for Pods
      • Automatic scaling Pods and clusters
      • Advanced scheduling
        • Taints and tolerations
        • Node affinity and Pod affinity
        • Additional
      • Adding custom resource to Kubernetes
    • Openshift
    • IaC
      • Terraform
        • Definition
        • Why chose Terraform?
        • IAC with Terraform
          • Terraform Workflow
            • Terraform Init
            • Terraform Plan
            • Terraform Apply
            • Terraform Destroy
          • Terraform Syntax
        • Terraform Architecture
          • Variable in terraform
          • Variable Type Contraint
          • Terraform Output
          • Terraform Provisioners
        • Terraform State
          • The concept
          • Local and Remote State Storage
          • Persisting Terraform State in AWS S3
          • Hand on
        • Terraform Modules
          • Accessing and Using Terraform Modules
          • Interating with Terraform Module Inputs and Outputs
          • Hand on
        • Built-in Functions and Dynamic Blocks
          • Built-in Function
          • Terraform Type Constraints (Collection & Structural)
          • Terraform Dynamic Block
          • Hand on
        • Terraform CLI
          • Terraform CLI: fmt, taint & import
          • Hand on
            • Practicing Terraform CLI commands(fmt, taint, import)
            • Using Terraform CLI Commands (workspace and state) to Manipulate a Terraform deployment
      • Ansible
    • Jenkin
    • GitOps
      • What is ?
      • Argo CD
    • Monitoring
      • Prometheus and Grafana
      • New Relic
  • Web Server
    • Apache
    • Nginx
    • IIS
  • Security
    • How to prevent crawl data
    • SQL Injection
    • OWASP
      • Web Application Security Risks
        • Broken Access Control
        • Cryptographic Failures
        • Injection
        • Insecure Design
        • Security Misconfiguration
        • Vulnerable and Outdated Components
        • Identification and Authentication Failures
        • Software and Data Integrity Failures
        • Security Logging and Monitoring Failures
        • Server-Side Request Forgery
      • API Security Risks
        • Broken Object Level Authorization
        • Broken Authentication
        • Broken Object Property Level Authorization
        • Unrestricted Resource Consumption
        • Broken Function Level Authorization
        • Unrestricted Access to Sensitive Business Flows
        • Server Side Request Forgery
        • Security Misconfiguration
        • Improper Inventory Management
        • Unsafe Consumption of APIs
    • Security headers
      • HTTP Strict Transport Security (HSTS)
      • Content Security Policy (CSP)
      • Cross Site Scripting Protection (X-XSS-Protection)
      • X-Frame-Options
      • X-Content-Type-Options
      • X-Permitted-Cross-Domain-Policies
      • Public Key Pinning (PKP)
        • What is HTTP Public Key Pinning and Why It’s Not Good to Practice
      • Expect-CT
        • The end of Expect-CT
      • Referer-Policy
      • Pragma
      • Cache-Control
        • Difference between Pragma and Cache-Control headers
      • Same-origin policy
      • Cross-origin resource sharing (CORS)
  • Data Change Capture (CDC)
    • Debezium
  • Software Development Life Cycle (SDLF)
    • Waterfall
    • V Model
    • Agile
      • Methods
        • Xtreme Programming
          • TDD
          • BDD
        • Scrum
        • Kanban
      • Question
  • Secure Software Development Framework (SSDF)
    • Page 1
  • Source Control
    • Git
    • SVN
    • TFS
  • Integration Systems
    • Stripe
    • Salesforce
    • TaxJar
    • Zendesk
  • Enterprise Service Bus (ESB)
    • Mulesoft
  • Data
    • 5 type of analytics
  • SOFTWARE QUALITY STANDARDS – ISO 5055
    • Standard
    • All about ISO 5055
  • Interview Question
    • Overview
      • Roadmap To Clearing Technical Interview
    • Technical
      • DSA
      • System Design
      • C#
      • React
    • Behavior
    • Question back to the interviewer
  • Roadmap
    • .NET
    • Java
  • English
    • Phát âm ed
    • Many vs much
    • Most vs most of vs almost vs the most
    • Quy tắc thêm s,es vào danh từ và cách phát âm s,es chuẩn xác nhất
  • Those will be seen later
    • Note
    • Interview
  • Programming Language
    • Python
      • Data structure
        • Set
    • Javascript
      • Data Structure
        • Map
    • C#
      • Data Structure
        • Value type & Reference type
        • Using statement
        • HashSet
        • Dictionary
        • Priority Queue
      • Fact
        • Understand about IEnumerable vs. IQueryable vs. ICollection vs. IList
        • 5 things you should know about enums in C#
    • Java
Powered by GitBook
On this page
  • Introduction
  • Problem
  • Solution
  • Structure
  • Advantages & disadvantages
  • When to use it
  • Applicability
  • How to Implement
  • Relations with Other Patterns
  1. Design Pattern
  2. Behavior Design Patterns

Memento

Without violating encapsulation, capture and externalize an object's internal state so that the object can be restored to this state later.

PreviousPythonNextCode example

Last updated 1 year ago

Introduction

  • Classification: Behavior Pattern

  • Purpose: Memento allows users to store and restore old versions of an object without interfering with the content of that object.

Problem

Imagine that you’re creating a text editor app. In addition to simple text editing, your editor can format text, insert inline images, etc.

At some point, you decided to let users undo any operations carried out on the text. This feature has become so common over the years that nowadays people expect every app to have it. For the implementation, you chose to take the direct approach. Before performing any operation, the app records the state of all objects and saves it in some storage. Later, when a user decides to revert an action, the app fetches the latest snapshot from the history and uses it to restore the state of all objects.

Let’s think about those state snapshots. How exactly would you produce one? You’d probably need to go over all the fields in an object and copy their values into storage. However, this would only work if the object had quite relaxed access restrictions to its contents. Unfortunately, most real objects won’t let others peek inside them that easily, hiding all significant data in private fields.

Ignore that problem for now and let’s assume that our objects behave like hippies: preferring open relations and keeping their state public. While this approach would solve the immediate problem and let you produce snapshots of objects’ states at will, it still has some serious issues. In the future, you might decide to refactor some of the editor classes, or add or remove some of the fields. Sounds easy, but this would also require changing the classes responsible for copying the state of the affected objects.

But there’s more. Let’s consider the actual “snapshots” of the editor’s state. What data does it contain? At a bare minimum, it must contain the actual text, cursor coordinates, current scroll position, etc. To make a snapshot, you’d need to collect these values and put them into some kind of container.

Most likely, you’re going to store lots of these container objects inside some list that would represent the history. Therefore the containers would probably end up being objects of one class. The class would have almost no methods, but lots of fields that mirror the editor’s state. To allow other objects to write and read data to and from a snapshot, you’d probably need to make its fields public. That would expose all the editor’s states, private or not. Other classes would become dependent on every little change to the snapshot class, which would otherwise happen within private fields and methods without affecting outer classes.

It looks like we’ve reached a dead end: you either expose all internal details of classes, making them too fragile, or restrict access to their state, making it impossible to produce snapshots. Is there any other way to implement the "undo"?

Solution

All problems that we’ve just experienced are caused by broken encapsulation. Some objects try to do more than they are supposed to. To collect the data required to perform some action, they invade the private space of other objects instead of letting these objects perform the actual action.

The Memento pattern delegates creating the state snapshots to the actual owner of that state, the originator object. Hence, instead of other objects trying to copy the editor’s state from the “outside,” the editor class itself can make the snapshot since it has full access to its own state.

The pattern suggests storing the copy of the object’s state in a special object called memento. The contents of the memento aren’t accessible to any other object except the one that produced it. Other objects must communicate with mementos using a limited interface which may allow fetching the snapshot’s metadata (creation time, the name of the performed operation, etc.), but not the original object’s state contained in the snapshot.

Such a restrictive policy lets you store mementos inside other objects, usually called caretakers. Since the caretaker works with the memento only via the limited interface, it’s not able to tamper with the state stored inside the memento. At the same time, the originator has access to all fields inside the memento, allowing it to restore its previous state at will.

In our text editor example, we can create a separate history class to act as the caretaker. A stack of mementos stored inside the caretaker will grow each time the editor is about to execute an operation. You could even render this stack within the app’s UI, displaying the history of previously performed operations to a user.

When a user triggers the undo, the history grabs the most recent memento from the stack and passes it back to the editor, requesting a roll-back. Since the editor has full access to the memento, it changes its own state with the values taken from the memento.

Structure

Implementation based on nested classes

The classic implementation of the pattern relies on support for nested classes, available in many popular programming languages (such as C++, C#, and Java).

  1. The Originator class can produce snapshots of its own state, as well as restore its state from snapshots when needed.

  2. The Memento is a value object that acts as a snapshot of the originator’s state. It’s a common practice to make the memento immutable and pass it the data only once, via the constructor.

  3. The Caretaker knows not only “when” and “why” to capture the originator’s state, but also when the state should be restored.

    A caretaker can keep track of the originator’s history by storing a stack of mementos. When the originator has to travel back in history, the caretaker fetches the topmost memento from the stack and passes it to the originator’s restoration method.

  4. In this implementation, the memento class is nested inside the originator. This lets the originator access the fields and methods of the memento, even though they’re declared private. On the other hand, the caretaker has very limited access to the memento’s fields and methods, which lets it store mementos in a stack but not tamper with their state.

Implementation based on an intermediate interface

There’s an alternative implementation, suitable for programming languages that don’t support nested classes (yeah, PHP, I’m talking about you).

  1. In the absence of nested classes, you can restrict access to the memento’s fields by establishing a convention that caretakers can work with a memento only through an explicitly declared intermediary interface, which would only declare methods related to the memento’s metadata.

  2. On the other hand, originators can work with a memento object directly, accessing fields and methods declared in the memento class. The downside of this approach is that you need to declare all members of the memento public.

Implementation with even stricter encapsulation

There’s another implementation which is useful when you don’t want to leave even the slightest chance of other classes accessing the state of the originator through the memento.

  1. This implementation allows having multiple types of originators and mementos. Each originator works with a corresponding memento class. Neither originators nor mementos expose their state to anyone.

  2. Caretakers are now explicitly restricted from changing the state stored in mementos. Moreover, the caretaker class becomes independent from the originator because the restoration method is now defined in the memento class.

  3. Each memento becomes linked to the originator that produced it. The originator passes itself to the memento’s constructor, along with the values of its state. Thanks to the close relationship between these classes, a memento can restore the state of its originator, given that the latter has defined the appropriate setters.

Advantages & disadvantages

Advantage

  • Preserving the encapsulation principle: directly using the object's state may reveal detailed information inside the object and violate the encapsulation principle.

  • Simplify the Originator code by letting Memento store the Originator's state and Caretaker manage the Originator's change history.

  • Some issues to consider when using Memento Pattern:

  • When a large number of Mementos are created, there may be problems with memory and application performance.

  • It is difficult to ensure that the internal state of Memento is not changed.

Disadvantage

  • App consumes a lot of RAM and processing if clients create mementos too often.

  • Caretakers must monitor the originator's lifecycle so they can destroy unused mementos.

  • Most modern languages, or more specifically dynamic programming languages, such as PHP, Python and Javascript, cannot guarantee that the state inside a memento is kept untouched.

When to use it

  • Applications that need functionality need Undo/Redo: save the state of an external object and can restore/rollback later.

  • Suitable for applications that need transaction management.

Applicability

  • Use the Memento pattern when you want to produce snapshots of the object’s state to be able to restore a previous state of the object.

    • The Memento pattern lets you make full copies of an object’s state, including private fields, and store them separately from the object. While most people remember this pattern thanks to the “undo” use case, it’s also indispensable when dealing with transactions (i.e., if you need to roll back an operation on error).

  • Use the pattern when direct access to the object’s fields/getters/setters violates its encapsulation.

    • The Memento makes the object itself responsible for creating a snapshot of its state. No other object can read the snapshot, making the original object’s state data safe and secure.

How to Implement

  1. Determine what class will play the role of the originator. It’s important to know whether the program uses one central object of this type or multiple smaller ones.

  2. Create the memento class. One by one, declare a set of fields that mirror the fields declared inside the originator class.

  3. Make the memento class immutable. A memento should accept the data just once, via the constructor. The class should have no setters.

  4. If your programming language supports nested classes, nest the memento inside the originator. If not, extract a blank interface from the memento class and make all other objects use it to refer to the memento. You may add some metadata operations to the interface, but nothing that exposes the originator’s state.

  5. Add a method for producing mementos to the originator class. The originator should pass its state to the memento via one or multiple arguments of the memento’s constructor.

    The return type of the method should be of the interface you extracted in the previous step (assuming that you extracted it at all). Under the hood, the memento-producing method should work directly with the memento class.

  6. Add a method for restoring the originator’s state to its class. It should accept a memento object as an argument. If you extracted an interface in the previous step, make it the type of the parameter. In this case, you need to typecast the incoming object to the memento class, since the originator needs full access to that object.

  7. The caretaker, whether it represents a command object, a history, or something entirely different, should know when to request new mementos from the originator, how to store them and when to restore the originator with a particular memento.

  8. The link between caretakers and originators may be moved into the memento class. In this case, each memento must be connected to the originator that had created it. The restoration method would also move to the memento class. However, this would all make sense only if the memento class is nested into originator or the originator class provides sufficient setters for overriding its state.

Relations with Other Patterns

Before executing an operation, the app saves a snapshot of the objects’ state, which can later be used to restore objects to their previous state.
How to make a copy of the object’s private state?
The originator has full access to the memento, whereas the caretaker can only access the metadata.

You can use and together when implementing “undo”. In this case, commands are responsible for performing various operations over a target object, while mementos save the state of that object just before a command gets executed.

You can use along with to capture the current iteration state and roll it back if necessary.

Sometimes can be a simpler alternative to . This works if the object, the state of which you want to store in the history, is fairly straightforward and doesn’t have links to external resources, or the links are easy to re-establish.

Command
Memento
Memento
Iterator
Prototype
Memento
How to make a copy of the object's private state?
Memento based on nested classes
Memento without nested classes
The originator has full access to the memento, whereas the caretaker can only access the metadata
Memento with strict encapsulation
Reverting operations in the editor