C#
Usage examples: The Decorator is pretty standard in C# code, especially in code related to streams.
Identification: Decorator can be recognized by creation methods or constructors that accept objects of the same class or interface as a current class.
Conceptual Example
This example illustrates the structure of the Decorator design pattern. It focuses on answering these questions:
What classes does it consist of?
What roles do these classes play?
In what way the elements of the pattern are related?
Program.cs: Conceptual example
using System;
namespace RefactoringGuru.DesignPatterns.Composite.Conceptual
{
// The base Component interface defines operations that can be altered by
// decorators.
public abstract class Component
{
public abstract string Operation();
}
// Concrete Components provide default implementations of the operations.
// There might be several variations of these classes.
class ConcreteComponent : Component
{
public override string Operation()
{
return "ConcreteComponent";
}
}
// The base Decorator class follows the same interface as the other
// components. The primary purpose of this class is to define the wrapping
// interface for all concrete decorators. The default implementation of the
// wrapping code might include a field for storing a wrapped component and
// the means to initialize it.
abstract class Decorator : Component
{
protected Component _component;
public Decorator(Component component)
{
this._component = component;
}
public void SetComponent(Component component)
{
this._component = component;
}
// The Decorator delegates all work to the wrapped component.
public override string Operation()
{
if (this._component != null)
{
return this._component.Operation();
}
else
{
return string.Empty;
}
}
}
// Concrete Decorators call the wrapped object and alter its result in some
// way.
class ConcreteDecoratorA : Decorator
{
public ConcreteDecoratorA(Component comp) : base(comp)
{
}
// Decorators may call parent implementation of the operation, instead
// of calling the wrapped object directly. This approach simplifies
// extension of decorator classes.
public override string Operation()
{
return $"ConcreteDecoratorA({base.Operation()})";
}
}
// Decorators can execute their behavior either before or after the call to
// a wrapped object.
class ConcreteDecoratorB : Decorator
{
public ConcreteDecoratorB(Component comp) : base(comp)
{
}
public override string Operation()
{
return $"ConcreteDecoratorB({base.Operation()})";
}
}
public class Client
{
// The client code works with all objects using the Component interface.
// This way it can stay independent of the concrete classes of
// components it works with.
public void ClientCode(Component component)
{
Console.WriteLine("RESULT: " + component.Operation());
}
}
class Program
{
static void Main(string[] args)
{
Client client = new Client();
var simple = new ConcreteComponent();
Console.WriteLine("Client: I get a simple component:");
client.ClientCode(simple);
Console.WriteLine();
// ...as well as decorated ones.
//
// Note how decorators can wrap not only simple components but the
// other decorators as well.
ConcreteDecoratorA decorator1 = new ConcreteDecoratorA(simple);
ConcreteDecoratorB decorator2 = new ConcreteDecoratorB(decorator1);
Console.WriteLine("Client: Now I've got a decorated component:");
client.ClientCode(decorator2);
}
}
}
Output.txt: Execution result
Client: I get a simple component:
RESULT: ConcreteComponent
Client: Now I've got a decorated component:
RESULT: ConcreteDecoratorB(ConcreteDecoratorA(ConcreteComponent))
Last updated