💻
Software Development
Technical Knowledges
Technical Knowledges
  • Everything anyone should know
    • Fundamental
      • Life cycle of Dependency Injection
        • When to use?
          • Transient
          • Scoped
          • Singleton
      • OOP
        • Inheritance
          • More with override in C#
            • Why need to use "virtual" keyword when we can use "new" keyword
          • How to achieve multiple inheritance in C#
          • Note
        • Polymophism
        • Encapsulation
        • Abtraction
          • Not use "override" keyword in abstract method
          • Notes
      • Data representing
        • JSON
        • XML
        • Comparation
      • Middleware
      • Status Code
      • API Styles
        • SOAP
        • REST
          • Question
        • GraphQL
        • gRPC
        • WebSocket
        • Webhook
        • Comparation
          • SOAP vs REST
          • REST vs GraphQL
          • gRPC vs REST
          • HTTP vs WebSocket
      • SDK
    • Advanced
      • Memoize
      • N+1 issues
      • Concurrency
        • Thread
          • Race Condition
          • Thread Safety
          • Critical Sections
        • Deadlock
        • Semaphore
    • Comparison
      • Architecture
        • SOA vs Microservices
        • Strong Consistency vs Eventual Consistency
      • Data structures
        • Instance vs Object
        • Field vs Property
        • Properties vs Method
        • Class vs Struct
        • const vs readoly vs static
        • Value types and Reference types
        • i++ vs ++i
        • Prototypal Inheritance vs Class Inheritance
        • Abstraction vs Interface
        • Run-time vs Compile-time
        • Overloading vs Overriding
      • Front-end
        • SSR vs SPA
        • Axios vs Fetch
      • Databases
        • Different between Function() and Store Procedure()
      • Security
        • Encoding vs Encryption vs Tokenization
      • Message Broker
        • RabbitMQ vs Kafka
      • Devops
        • Kubernetes vs Docker Swarm
        • Docker Repository vs Docker Registry
      • Cloud
      • Computer Science
        • Recursion and Iteration
      • Technology
        • .NET Core vs .NET Framework
        • Cache vs Local Storage vs Session Storage vs Cookies
      • SDLC
        • TDD vs BDD
  • Design Pattern
    • Overview
    • Creational Design Patterns
      • Abstract Factory
        • Code Example
          • C#
          • Java
          • Python
      • Builder
        • Code Example
          • C#
          • Java
          • Python
      • Factory Method
        • Code Example
          • C#
          • Java
          • Python
      • Prototype
        • Code example
          • C#
          • Java
          • Python
      • Singleton
        • Code example
          • C#
            • Naïve Singleton
            • Thread-safe Singleton
          • Java
            • Naïve Singleton (single-threaded)
            • Naïve Singleton (multithreaded)
            • Thread-safe Singleton with lazy loading
          • Python
            • Naïve Singleton
            • Thread-safe Singleton
    • Structural Design Patterns
      • Adapter
        • Code example
          • C#
          • Java
          • Python
            • Conceptual Example (via inheritance)
            • Conceptual Example (via object composition)
      • Bridge
        • Code example
          • C#
          • Java
          • Python
      • Composite
        • Code example
          • C#
          • Java
          • Python
      • Decorator
        • Code example
          • C#
          • Java
          • Python
      • Facade
        • Code example
          • C#
          • Java
          • Python
      • Flyweight
        • Code example
          • C#
          • Java
          • Python
      • Proxy
        • Code example
          • C#
          • Java
          • Python
    • Behavior Design Patterns
      • Chain of Responsibility
        • Code example
          • C#
          • Java
          • Python
      • Command
        • C#
        • Java
        • Python
      • Interpreter
        • Code example
          • C#
      • Iterator
        • Code example
          • C#
          • Java
          • Python
      • Mediator
        • Code example
          • C#
          • Java
          • Python
      • Memento
        • Code example
          • C#
          • Java
          • Python
      • Observer
        • Code example
          • C#
          • Java
          • Python
      • State
        • Code example
          • C#
          • Java
          • Python
      • Strategy
        • Code example
          • C#
          • Java
          • Python
        • Different with using abstract class
      • Template Method
        • Code example
          • C#
          • Java
          • Python
      • Visitor
        • Code example
          • C#
          • Java
          • Python
    • Use cases
      • Real-life example
    • More
      • Circuit Breaker Pattern
      • Repository Pattern
      • Unit Of Work Pattern
    • Some design patterns contradictory
  • Architect
    • Clean Architecture
    • Layered (n-tier) Architecture
    • Microservices Architecture
    • Monolithic Architecture
    • Service-Oriented Architecture (SOA)
    • Domain-Driven Design (DDD)
    • Blackboard Architecture
    • Object-Oriented Architecture
  • Microservices Design Pattern
    • Saga Pattern
      • Example
    • Strangler Fig Pattern
    • API Gateway Pattern
    • Backends For Frontends (BFF) Pattern
    • Service Discovery Pattern
    • Circuit Breaker Pattern
    • Bulk Head Pattern
    • Retry Pattern
    • Sidecar Pattern
    • Event Driven Architecture Pattern
    • CQRS (Command and Query Responsibility Segregation)
      • Event Sourcing
      • Code example
        • Basic
        • CQRS + MediatR + EDA + RabbitMQ
      • The Good, the Bad, and the Ugly
    • Configuration Externalization Pattern
  • Design and development principles
    • SOLID aka Design Principles
    • Cohesion Principles
    • Coupling principle
    • Some fundamental principles
      • Separation of Concerns
      • Persistence Ignorance
      • DRY
      • KISS
  • Authentication and Authorization Standards
    • SAML
    • OAuth
    • OIDC
    • SCIM
    • SSO
    • Tools
      • Keycloak
    • More
      • JWT
      • Access Token & Refresh Token
  • .NET TECHNOLOGY
    • .NET MVC
      • HTML Helpers
        • Extension method for HTML Helpers
      • Filters
        • Order of Filters
    • Fundamental
      • Startup file
      • Query Data
        • Linq
          • Filtering
          • Sorting
          • Projecting
          • Quantifying
          • Flattening
          • Grouping
          • Joining
          • Aggregating
          • Deferred execution vs Immediate execution
        • OData
          • Filter Expression
      • ORM
        • Entity Framework
          • Eager Loading vs Lazy Loading vs Explicit Loading
          • How to improve our entity framework core query performance
        • Dapper
        • Why Dapper faster than Entity Framework
      • Identity Server
      • Fluent Validation
      • Minimal API
      • Generic
      • IoC
        • Castle Windsor
        • Autofac
        • Ninject
      • CLR
      • Refit
      • Task Schedule
        • Hangfire
        • Quartz
      • Some notice
    • Advanced
      • Multi Thread
        • Thread pool
        • Parallel
        • Comparation
        • Code comparation
      • Caching
        • IMemoryCache
      • MediatR
      • SignalR
      • API Gateway
        • Ocelot
      • gRPC
      • Multitenancy
      • Special C# technique
        • Generic
        • Extension Method
        • Delegate
        • Lambda Expression
        • Yield
      • Jetbrain tools
        • dotTrace
        • dotMemory
        • dotPeek
      • ABP Framework
        • Multi Layered
          • Domain Layer
            • Entities
            • Repository
            • Domain Services
          • Application Layer
            • Application Services
            • Data Transfer Objects
          • Data Access
            • Entity Framework Core Integration
            • MongoDB Integration
        • Microservice Architecture
        • DDD
          • Domain Layer
            • Entities & Aggregate Roots
            • Value Objects
            • Repositories
            • Domain Services
            • Specifications
          • Application Layer
            • Application Services
            • Data Transfer Objects
            • Unit of Work
    • Tutorial Coding
      • Custom and Using Middleware in .NET CORE
      • Connect Elastic Search and MongoDB
      • Implementing the Unit of Work Pattern in Clean Architecture with .NET Core
    • ServiceStack
    • POCO
  • System Design
    • Blueprint
    • Fundamental
      • Scale from zero to millions of users
        • Single server setup
        • Database
        • Load balancer
        • Database replication
        • Cache
        • Content delivery network (CDN)
        • Stateless web tier
        • Data centers
        • Message queue
        • Logging, metrics, automation
        • Database scaling
        • Millions of users and beyond
      • A framework for system design interviews
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
        • Step 4 - Wrap up
        • Summarize
      • Back-of-the-envelope estimation
      • Design a rate limiter
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
          • Algorithms for rate limiting
            • Token bucket algorithm
            • Leaking bucket algorithm
            • Fixed window counter algorithm
            • Sliding window log algorithm
            • Sliding window counter algorithm
          • High-level architecture
        • Step 3 - Design deep dive
          • Rate limiting rules
          • Exceeding the rate limit
          • Detailed design
          • Rate limiter in a distributed environment
          • Performance optimization
          • Monitoring
        • Step 4 - Wrap up
      • Design consistent hashing
        • Consitent hashing
        • Two issues in the basic approach
        • Wrap up
      • Design key-value store
        • Understand the problem and establish the design scope
        • CAP theorem
        • System components
          • Data partition
          • Data replication
          • Consistency
          • Inconsistency resolution
          • Handling failures
          • System architecture diagram
          • Write path
          • Read path
      • Design a unique id generator in distributed systems
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
          • Multi-master replication
          • UUID
          • Ticket Server
          • Twitter snowflake approach
        • Step 3 - Design deep dive
        • Step 4 - Wrap up
      • Design a url shortener
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
          • Data model
          • Hash function
          • URL shortening deep dive
          • URL redirecting deep dive
        • Step 4 - Wrap up
      • Design a web crawler
        • Step 1 - Understand the problem and establish design scope
        • Step 2 - Propose high-level design and get buy-in
        • Step 3 - Design deep dive
          • DFS vs BFS
          • URL frontier
          • HTML Downloader
          • Robustness
          • Extensibility
          • Detect and avoid problematic content
        • Step 4 - Wrap up
    • Use cases
      • Design Youtube
      • Design Social Media App
      • Design Typehead Suggestion
      • Design Taxi Booking System
      • Design Messaging App
  • DBMS
    • Fundamental
      • ACID
      • Order Of Execution of the SQL query
      • Transaction – Concurrency Control Techniques
        • Isolation level
      • Index
        • Clustered Index vs Non-clustered index
        • Index vs Unique index
      • Built-in functions
        • String Functions
          • ASCII
          • CHAR
          • CHARINDEX
          • CONCAT
          • CONCAT_WS
          • DATALENGTH
          • DIFFERENCE
          • FORMAT
          • LEFT
          • LEN
          • LOWER
          • LTRIM
          • NCHAR
          • PATINDEX
          • QUOTENAME
          • REPLACE
          • REPLICATE
          • REVERSE
          • RIGHT
          • RTRIM
          • SOUNDEX
          • SPACE
          • STR
          • STUFF
          • SUBSTRING
          • TRANSLATE
          • TRIM
          • UNICODE
          • UPPER
        • Numeric Functions
          • ABS
          • ACOS
          • ASIN
          • ATAN
          • ATN2
          • AVG
          • CEILING
          • COUNT
          • COS
          • DEGREES
          • EXP
          • FLOOR
          • LOG
          • LOG10
          • MAX
          • MIN
          • PI
          • POWER
          • RADIANS
          • ROUND
          • SIGN
          • SIN
          • SQRT
          • SQUARE
          • SUM
          • TAN
        • Date Functions
          • CURRENT_TIMESTAMP
          • DATEADD
          • DATEDIFF
          • DATEFROMPARTS
          • DATENAME
          • DATEPART
          • DAY
          • GETDATE
          • GETUTCDATE
          • ISDATE
          • MONTH
          • SYSDATETIME
          • YEAR
        • Advance Functions
          • CASE
          • CAST
          • COALESCE
          • CONVERT
          • CURRENT_USER
          • LEAD
          • LAG
          • IIF
          • ISNULL
          • ISNUMERIC
          • NULLIF
          • SESSION_USER
          • SESSIONPROPERTY
          • SYSTEM_USER
          • USER_NAME
      • SQL Best Practice
      • Execution Plan
      • Optimize query execution
    • Advanced
      • CTE
      • Window function
      • Performance Tuning
        • Query tuning
        • Interview ques
      • DB Sharding
      • Concurrency Control
        • Optimistic lock
        • Pessimistic lock
      • Compare DELETE VS TRUNCATE
    • Comparation
      • Oracle vs SQL Server vs Postgre vs Mysql
  • Javascript
    • ES6 Techniques
      • Hoisting
      • Destructing
      • Spread Operator
      • Rest Operator
    • Basic
      • Const vs Let vs Var
      • Debounce & Throttle
      • Callback()
    • 5 ways to define a function
  • Clean code
    • Page 2
  • Search Engine
    • Elastic Search
      • Interview question
      • Code Example
    • Solr
    • IBM Watson Discovery
    • Google Cloud Search
    • Coveo Relevance Cloud
  • Cloud Service
    • Overview
    • Azure
      • Certificate
        • AZ-900
          • Describe cloud concepts
            • What is Cloud Computing?
            • Benefits of using cloud services
              • High Availability and Scalability
              • High Elasticity
              • High Reliability and Predictability
              • High Security and Governance
              • High manageability
            • IaaS vs PaaS vs SaaS
            • Cloud Deployment Models
            • CAPEX vs OPEX
          • Describe Azure architecture and services
            • Describe the core architectural components of Azure
              • Learn sandbox
              • Azure physical infrastructure
              • Azure management infrastructure
              • Create an Azure resource
            • Describe Azure compute and networking services
              • Azure Virtual Machines
              • Create an Azure Virtual Machine
              • Azure Virtual Desktop
              • Azure Containers
              • Azure Function
              • Describe application hosting options
              • Configure network access
              • Describe Azure Virtual Networking
              • Azure Virtual Private Networks
              • Azure ExpressRoute
              • Azure DNS
            • Describe Azure storage services
              • Azure storage accounts
              • Azure storage redundancy
              • Azure storage services
              • Create a storage blob
              • Identify Azure data migration options
              • Identify Azure file movement options
            • Describe Azure identity, access, and security
              • Azure directory services
              • Azure authentication methods
              • Azure external identities
              • Azure conditional access
              • Azure role-based access control
              • Zero trust model
              • Defense-in-depth
              • Microsoft Defender for Cloud
          • Describe Azure management and governance
            • Describe cost management in Azure
              • Factors that can affect costs in Azure
              • Compare the Pricing and Total Cost of Ownership calculators
              • Estimate workload costs by using the Pricing calculator
              • Compare workload costs using the TCO calculator
              • Azure Cost Management tool
            • Describe features and tools in Azure for governance and compliance
              • Azure Blueprints
              • Azure Policy
              • Purpose of resource locks
              • Configure a resource lock
              • Service Trust portal
            • Describe features and tools for managing and deploying Azure resources
              • Tools for interacting with Azure
              • Azure Arc
              • Azure Resource Manager and Azure ARM templates
            • Describe monitoring tools in Azure
              • Azure Advisor
              • Azure Service Health
              • Azure Monitor
        • SC-900
          • Describe the concepts of security, compliance, and identity
            • Describe security and compliance concepts
              • Shared responsibility model
              • Defense in depth
              • Zero Trust model
              • Encryption and hashing
              • Compliance concepts
            • Describe identity concepts
              • Authentication and authorization
              • Identity as the primary security perimeter
              • Role of the identity provider
              • Directory services and Active Directory
              • Federation
          • Describe the capabilities of Microsoft Azure Active Directory, part of Microsoft Entra
            • Describe the services and identity types of Azure AD
              • Azure Active Directory
              • Available Azure AD editions
              • Azure AD identity types
              • Types of external identities
              • Concept of hybrid identity
            • Describe the authentication capabilities of Azure AD
              • Authentication methods available in Azure AD
              • Multi-factor authentication (MFA) in Azure AD
              • Self-service password reset (SSPR) in Azure AD
              • Password protection and management capabilities of Azure AD
            • Describe the access management capabilities of Azure AD
              • Conditional Access in Azure AD
              • Benefits of Azure AD roles and role-based access control
            • Describe the identity protection and governance capabilities of Azure AD
              • Identity governance in Azure AD
              • Entitlement management and access reviews
              • Privileged identity Management
              • Azure Identity Protection
          • Describe the capabilities of Microsoft security solutions
            • Describe basic security capabilities in Azure
              • Azure DDoS protection
              • Azure Firewall
              • Web Application Firewall
              • Network segmentation in Azure
              • Azure Network Security groups
              • Azure Bastion and JIT Access
              • Describe ways Azure encrypts data
            • Describe security management capabilities of Azure
              • Cloud security posture management
              • Microsoft Defender for Cloud
              • Enhanced security of Microsoft Defender for Cloud
              • Microsoft cloud security benchmark and security baselines for Azure
            • Describe security capabilities of Microsoft Sentinel
              • SIEM and SOAR
              • How Microsoft Sentinel provides integrated threat management
              • Understand Sentinel costs
            • Describe threat protection with Microsoft 365 Defender
              • Microsoft 365 Defender services
              • Microsoft Defender for Office 365
              • Microsoft Defender for Endpoint
              • Microsoft Defender for Cloud Apps
              • Microsoft Defender for Identity
              • Microsoft 365 Defender portal
          • Describe the capabilities of Microsoft compliance solutions
            • Describe the Service Trust Portal and privacy at Microsoft
              • Service Trust Portal
              • Microsoft's privacy principles
              • Microsoft Priva
            • Describe the compliance management capabilities in Microsoft Purview
              • Microsoft Purview compliance portal
              • Compliance Manager
              • Describe use and benefits of compliance score
            • Describe information protection and data lifecycle management in Microsoft Purview
              • Know your data, protect your data, and govern your data
              • Data classification capabilities of the compliance portal
              • Sensitivity labels and policies
              • Data loss prevention
              • Retention policies and Retention labels
              • Records management
            • Describe insider risk capabilities in Microsoft Purview
              • Risk management
              • Communication compliance
              • Information barriers
            • Describe the eDiscovery and audit capabilities of Microsoft Purview
              • eDiscovery solutions in Microsoft Purview
              • Audit solutions in Microsoft Purview
            • Describe resource governance capabilities in Azure
              • Azure Policy
              • Azure Blueprints
              • Capabilities in the Microsoft Purview governance portal
        • DP-900
          • Core Concept
            • Explore core data concepts
              • Data formats
              • File storage
              • Databases
              • Transactional data processing
              • Analytical data processing
            • Explore data roles and services
              • Job roles in the world of data
              • Identify data services
          • Relational Data in Azure
            • Explore fundamental relational data concepts
              • Relational data
              • Normalization
              • SQL
              • Database objects
            • Explore relational database services in Azure
              • Azure SQL services and capabilities
              • Azure services for open-source databases
              • Exercise: Explore Azure relational database services
          • Non-relational data in Azure
            • Explore Azure Storage for non-relational data
              • Azure blob storage
              • Azure DataLake Storage Gen2
              • Azure Files
              • Azure Tables
              • Exercise: Explore Azure Storage
            • Explore fundamentals of Azure Cosmos DB
              • Azure Cosmos DB
              • Identify Azure Cosmos DB APIs
              • Exercise: Explore Azure Cosmos DB
          • Data analytics in Azure
            • Explore fundamentals of large-scale data warehousing
              • Data warehousing architecture
              • Data ingestion pipelines
              • Analytical data stores
              • Exercise: Explore data analytics in Azure with Azure Synapse Analytics
            • Explore fundamentals of real-time analytics
              • Understand batch and stream processing
              • Explore common elements of stream processing architecture
              • Azure Stream Analytics
              • Exercise: Explore Azure Stream Analytics Completed
              • Apache Spark on Microsoft Azure
              • Exercise: Explore Spark Streaming in Azure Synapse Analytics Completed
            • Explore fundamentals of data visualization
              • Power BI tools and workflow
              • Core concepts of data modeling
              • Considerations for data visualization
              • Exercise – Explore fundamentals of data visualization with Power BI Completed
        • AI-900
      • Azure Subscription
      • Azure App Service
      • Azure Dictionary B2C
      • Azure Front Door
      • Azure Traffic Manager
      • Azure Load Balancer
      • Azure KeyVault
      • API Management
      • Azure Logic Apps
      • Azure Metric and Logs
      • Azure Workbooks
      • Azure Messaging Services
      • Azure Service Fabric
      • Comparison
        • Durable Function vs Logic App
        • Storage queues vs Service Bus queues
        • Event Grid vs Service Bus
    • AWS
      • Certificate
        • CLF-C02
          • Cloud Concepts
            • Cloud Computing
            • The Deployment Models of the Cloud
            • The Five Characteristics of Cloud Computing
            • Six Advantages of Cloud Computing
            • Problems solved by the Cloud
            • Types of Cloud Computing
            • Pricing of the Cloud
            • AWS Global Infrastructure
              • AWS Regions
              • AWS Availability Zones
              • AWS Points of Presence (Edge Locations)
            • Tour of the AWS Console
            • Shared Responsibility Model diagram
          • Security & Compliance
            • AWS Shared Responsibility Model
            • DDOS
            • Network Firewall
            • Penetration Testing on AWS Cloud
            • Encryption
            • AWS Certificate Manager (ACM)
            • AWS Secrets Manager
            • AWS Artifact (not really a service)
            • Amazon GuardDuty
            • Amazon Inspector
            • AWS Config
            • AWS Macie
            • AWS Security Hub
            • Amazon Detective
            • AWS Abuse
            • Root user privileges
            • IAM Access Analyzer
            • Summary
            • Advanced Identity
              • STS
              • Cognito
              • Directory Services
              • IAM Identity Center
              • Summary
          • Cloud Technology & Services
            • IAM
              • IAM: Users & Groups
              • IAM: Permissions
              • IAM Policies inheritance
              • IAM Policies Structure
              • IAM – Password Policy
              • Multi-Factor Authentication - MFA
              • How can users access AWS?
                • AWS CLI
                • AWS SDK
              • IAM Roles for Services
              • IAM Security Tools
              • IAM Guidelines & Best Practices
              • Shared Responsibility Model for IAM
              • Summary
            • EC2
              • Overview
              • EC2 Instance Types
                • Overview
                • General Purpose
                • Compute Optimized
                • Memory Optimized
                • Storage Optimized
                • Example
              • Security Groups
              • SSH in EC2
              • EC2 Instance Purchasing Options
                • On-Demand Instances
                • Reserved Instances
                • Savings Plans
                • Spot Instances
                • Dedicated Hosts
                • Dedicated Instances
                • Capacity Reservations
                • Summary
              • EC2 Instance Storage
                • EBS
                • EBS Snapshot
                • AMI
                • EC2 Image Builder
                • EC2 Instance Store
                • EFS
                • Shared Responsibility Model for EC2 Storage
                • Amazon FSx
                • Summary
            • ELB & ASG
              • High Availability, Scalability, Elasticity
              • ELB
              • ASG
              • Summary
            • Amazon S3
              • Overview
              • Security
              • Techniques
              • Shared Responsibility Model for S3
              • AWS Snow Family
              • Summary
            • Database & Analytics
              • Overview
              • RDS & Aurora
              • Amazon ElastiCache
              • DynamoDB
              • Redshift
              • EMR
              • Amazon Athena
              • Amazon QuickSight
              • DocumentDB
              • Amazon Neptune
              • Amazon QLDB
              • Amazon Managed Blockchain
              • AWS Glue
              • DMS – Database Migration Service
              • Summary
            • Other Compute Service
              • Docker
              • ECS
              • Fargate
              • ECR
              • AWS Lamda
              • Amazon API Gateway
              • AWS Batch
              • Amazon Lightsail
              • Summary
                • Other Compute - Summary
                • Lambda Summary
            • Deploying and Managing Infrastructure
              • CloudFormation
              • CDK
              • Elastic Beanstalk
              • AWS CodeDeploy
              • AWS CodeCommit
              • AWS CodePipeline
              • AWS CodeArtifact
              • AWS CodeStar
              • AWS Cloud9
              • SSM
              • AWS OpsWorks
              • Summary
            • Global Infrastructure
              • Overview
              • Route 53
              • CloudFront
              • AWS Global Accelerator
              • AWS Outposts
              • AWS WaveLength
              • AWS Local Zones
              • Global Applications Architecture
              • Summary
            • Cloud Integration
              • Overview
              • SQS
              • Kinesis
              • SNS
              • MQ
              • Summary
            • Cloud Monitoring
              • CloudWatch
              • EventBridge
              • CloudTrail
              • X-Ray
              • CodeGuru
              • Health Dashboard
              • Summary
            • VPC
              • Overview
              • IP Addresses in AWS
              • VPC Diagram
              • Core networking
              • VPC Flow Logs
              • VPC Peering
              • VPC Endpoints
              • AWS PrivateLink (VPC Endpoint Services)
              • Site to Site VPN & Direct Connect
              • AWS Client VPN
              • Transit Gateway
              • Summary
            • Machine Learning
              • Rekognition
              • Transcribe
              • Polly
              • Translate
              • Lex & Connect
              • Comprehend
              • SageMaker
              • Forecast
              • Kendra
              • Personalize
              • Textract
              • Summary
            • Other Services
              • WorkSpaces
              • AppStream 2.0
              • IoT Core
              • Elastic Transcoder
              • AppSync
              • Amplify
              • Device Farm
              • Backup
              • Disaster Recovery Strategies
              • AWS Elastic Disaster Recovery (DRS)
              • DataSync
              • Application Discovery Service
              • Application Migration Service (MGN)
              • Migration Evaluator
              • Migration Hub
              • FIS
              • Step Functions
              • Ground Station
              • Pinpoint
          • Account Management, Billing & Support
            • Organizations
            • SCP
            • Control Tower
            • RAM
            • Service Catalog
            • Savings Plan
            • AWS Compute Optimizer
            • Billing and Costing Tools
            • Pricing Calculator
            • Tracking costs in cloud
              • Cost Explorer
            • Monitoring costs in the could
            • AWS Cost Anomaly Detection
            • AWS Service Quotas
            • Trusted Advisor
            • Support Plans
            • Summary
              • Account Best Practices
              • Billing and CostingTools
          • AWS Architecting & Ecosystem
            • General Guiding Principles
            • Well Architected Framework
              • Operational Excellence
              • Security
              • Reliability
              • Performance Efficiency
              • Cost Optimization
              • Sustainability
            • AWS CAF
            • AWS Right Sizing
            • AWS Ecosystem
      • Comparison
        • Region, Availability Zone and Edge Location in AWS
        • EBS vs EFS
    • GCP
    • OCI
    • Object Storage Server
      • MinIO
    • Comparison
      • Azure Active Directory B2C vs AWS Cognito
  • Front End
    • Basic
      • HTML
        • <ul> vs <ol>
        • <table>
      • CSS
        • Padding
        • Box Model
        • Outline
        • Text
        • Display
        • Position
        • z-index
        • Overflow
        • Float
        • Inline vs Inline-block
        • CSS Combinators
        • CSS [attribute] Selector
        • Website Layout
        • Unit
        • CSS The !important Rule
        • Flexbox
        • Comparation
          • div.classname vs div .classname
          • .classname vs .clasname #id vs .classname#id
      • JQuery
        • Syntax
        • Document
      • AJAX
    • Modern Framework
      • React
        • HOC
        • State Management
          • Redux
            • Selector
            • Middleware
              • Saga
              • Thunk
          • MobX
        • Hooks
        • Life Cycle
          • React Lifecycle Methods
          • React Lifecycle Hooks
          • Comparation
        • Signals
      • Angular
        • Directives
          • Component Directives
          • Attribute Directives
            • Built-in
            • Building an Attribute Directive
          • Structural Directives
            • Built-in
            • Custom
        • Binding
        • Components
        • Routing
      • Vue
    • Compile & Module
      • Webpack
      • Babel
    • TypeScript
      • Cheat sheet
    • Blazor
      • WebAssembly
    • UI Library
      • Formik
      • Material UI
      • Tailwind CSS
    • Security
      • Top 7 Common Frontend Security Attacks
    • Some notices
  • Microservices
    • Service Mesh
    • Service Registry
    • Service Discovery
    • Composition
    • Orchestration
    • Transformation
    • Dapr
  • Network
    • Protocols
      • Overview
      • HTTP
      • MQTT
      • AMQP
      • FTP
      • TCP
      • UDP
      • ICMP
    • OSI Model
  • Cache
    • Redis
      • What data should and should not be cached
      • Use cache in
      • Demo in .NET
    • Hazelcast
    • Memcached
  • Message Broker
    • RabbitMQ
      • Demo in .NET
      • Interview Ques
      • Use case
    • Kafka
      • Top 5 Kafka Use Case
    • ActiveMQ
    • Masstransit
  • Bash Script
    • Linux file system
    • Cheat sheet
    • 18 Most-used Linux Commands
    • Interview Question
  • Devops
    • Overview
      • What is ?
      • IaC
      • SAFe
      • Progressive Delivery
        • Blue Green Deployments
        • Canary Deployments
        • A/B Test
      • Platform Engineering
    • Azure Pipeline
    • Docker
      • What is ?
      • Docker Engine
        • Image
        • Docker file
          • Some commands
        • Container
        • Network
        • Volume
          • Additional infomation
      • Docker CLI
      • Docker Compose
        • Additional
      • Docker Security
        • Best Practice
        • Additional Information
      • Docker Swarm
      • Storing
        • Docker Registry
        • Docker Hub
      • Summarize
    • Kubernetes
      • What is ?
        • Additional
      • Kubernetes Pod
      • Replication Controllers
      • ReplicaSets and DaemonSets
        • Additional
      • Kubernetes Services
      • Deployment
        • Additional
      • Volume
      • PersistentVolumes
        • Additional
      • Configuration
        • Additional
      • StatefulSets
        • Additional
      • Downward API
      • Kubernetes internals architecture
      • Pod internal
      • ServiceAccount and Role Based Access Control
      • Network
        • Additional
      • Managing and calculating resources used for Pods
      • Automatic scaling Pods and clusters
      • Advanced scheduling
        • Taints and tolerations
        • Node affinity and Pod affinity
        • Additional
      • Adding custom resource to Kubernetes
    • Openshift
    • IaC
      • Terraform
        • Definition
        • Why chose Terraform?
        • IAC with Terraform
          • Terraform Workflow
            • Terraform Init
            • Terraform Plan
            • Terraform Apply
            • Terraform Destroy
          • Terraform Syntax
        • Terraform Architecture
          • Variable in terraform
          • Variable Type Contraint
          • Terraform Output
          • Terraform Provisioners
        • Terraform State
          • The concept
          • Local and Remote State Storage
          • Persisting Terraform State in AWS S3
          • Hand on
        • Terraform Modules
          • Accessing and Using Terraform Modules
          • Interating with Terraform Module Inputs and Outputs
          • Hand on
        • Built-in Functions and Dynamic Blocks
          • Built-in Function
          • Terraform Type Constraints (Collection & Structural)
          • Terraform Dynamic Block
          • Hand on
        • Terraform CLI
          • Terraform CLI: fmt, taint & import
          • Hand on
            • Practicing Terraform CLI commands(fmt, taint, import)
            • Using Terraform CLI Commands (workspace and state) to Manipulate a Terraform deployment
      • Ansible
    • Jenkin
    • GitOps
      • What is ?
      • Argo CD
    • Monitoring
      • Prometheus and Grafana
      • New Relic
  • Web Server
    • Apache
    • Nginx
    • IIS
  • Security
    • How to prevent crawl data
    • SQL Injection
    • OWASP
      • Web Application Security Risks
        • Broken Access Control
        • Cryptographic Failures
        • Injection
        • Insecure Design
        • Security Misconfiguration
        • Vulnerable and Outdated Components
        • Identification and Authentication Failures
        • Software and Data Integrity Failures
        • Security Logging and Monitoring Failures
        • Server-Side Request Forgery
      • API Security Risks
        • Broken Object Level Authorization
        • Broken Authentication
        • Broken Object Property Level Authorization
        • Unrestricted Resource Consumption
        • Broken Function Level Authorization
        • Unrestricted Access to Sensitive Business Flows
        • Server Side Request Forgery
        • Security Misconfiguration
        • Improper Inventory Management
        • Unsafe Consumption of APIs
    • Security headers
      • HTTP Strict Transport Security (HSTS)
      • Content Security Policy (CSP)
      • Cross Site Scripting Protection (X-XSS-Protection)
      • X-Frame-Options
      • X-Content-Type-Options
      • X-Permitted-Cross-Domain-Policies
      • Public Key Pinning (PKP)
        • What is HTTP Public Key Pinning and Why It’s Not Good to Practice
      • Expect-CT
        • The end of Expect-CT
      • Referer-Policy
      • Pragma
      • Cache-Control
        • Difference between Pragma and Cache-Control headers
      • Same-origin policy
      • Cross-origin resource sharing (CORS)
  • Data Change Capture (CDC)
    • Debezium
  • Software Development Life Cycle (SDLF)
    • Waterfall
    • V Model
    • Agile
      • Methods
        • Xtreme Programming
          • TDD
          • BDD
        • Scrum
        • Kanban
      • Question
  • Secure Software Development Framework (SSDF)
    • Page 1
  • Source Control
    • Git
    • SVN
    • TFS
  • Integration Systems
    • Stripe
    • Salesforce
    • TaxJar
    • Zendesk
  • Enterprise Service Bus (ESB)
    • Mulesoft
  • Data
    • 5 type of analytics
  • SOFTWARE QUALITY STANDARDS – ISO 5055
    • Standard
    • All about ISO 5055
  • Interview Question
    • Overview
      • Roadmap To Clearing Technical Interview
    • Technical
      • DSA
      • System Design
      • C#
      • React
    • Behavior
    • Question back to the interviewer
  • Roadmap
    • .NET
    • Java
  • English
    • Phát âm ed
    • Many vs much
    • Most vs most of vs almost vs the most
    • Quy tắc thêm s,es vào danh từ và cách phát âm s,es chuẩn xác nhất
  • Those will be seen later
    • Note
    • Interview
  • Programming Language
    • Python
      • Data structure
        • Set
    • Javascript
      • Data Structure
        • Map
    • C#
      • Data Structure
        • Value type & Reference type
        • Using statement
        • HashSet
        • Dictionary
        • Priority Queue
      • Fact
        • Understand about IEnumerable vs. IQueryable vs. ICollection vs. IList
        • 5 things you should know about enums in C#
    • Java
Powered by GitBook
On this page
  • Access Token problem
  • What is Refresh Token?
  • The problem of inadequacy between theory and reality
  • Answer ten thousand questions about JWT
  • Why create a new refresh token when we perform a token refresh?
  • How to revoke (revoke) an access token?
  • Are there ever two JWTs that overlap?
  • Where should the access token and refresh token be saved on the client?
  • How to send access token to the server?
  • Why must Bearer be added before the access token?
  • When I log out, can I just delete the access token and refresh the token in the client's memory?
  1. Authentication and Authorization Standards
  2. More

Access Token & Refresh Token

Access Token problem

Like the above flow, we do not save the access token on the server, but on the client. This is called stateless, meaning the server does not store any state of any user.

Its disadvantage is that we cannot revoke the access token. You can see some examples below.

Example 1: On the server, we want to proactively log out a user but cannot, because there is no way to delete the access token on the client device.

Example 2: The client is hacked, resulting in the access token being exposed. The hacker gets the access token and can access protected resources. Even though the server knows that, it cannot refuse the hacked access token, because we only verify whether the access token is correct or not, but there is no mechanism to check whether the access token is on the blacklist or not.

For the second example, we can set the access token validity period to be short, for example 5 minutes, so if the access token is leaked, hackers will have less time to penetrate our resources. => reduce risks.

But this method is not very good, because it will cause the user to log out and have to login every 5 minutes, which is very unpleasant in terms of user experience.

At this time, people have come up with a way to minimize the above problems, which is to use Refresh Token.


What is Refresh Token?

Refresh Token is another token chain, created at the same time as Access Token. Refresh Token has a longer validity period than Access Token, for example 1 week, 1 month, 1 year...

The authentication flow with access token and refresh token will be updated as follows:

  1. The client sends a request to a protected resource on the server. If the client is not authenticated, the server returns a 401 Authorization error. The client sends their username and password to the server.

  2. The server verifies the provided authentication information against the user database. If the authentication information matches, the server generates 2 different JWTs , Access Token and Refresh Token, containing the payload user_id(or some field identifying the user). Access Token has a short duration (about 5 minutes). Refresh Token has a longer period (about 1 year). Refresh Token will be saved to the database, while Access Token will not.

  3. The server returns the access token and refresh token to the client.

  4. Client stores access token and refresh token in device memory (cookie, local storage,...).

  5. For subsequent requests, the client includes the access token in the request header.

  6. Server verifies access token with secret key to check if access token is valid.

  7. If valid, the server grants access to the requested resource.

  8. When the access token expires, the client sends a refresh token to the server to get a new access token.

  9. The server checks whether the refresh token is valid or exists in the database. If ok, the server will delete the old refresh token and create a new refresh token with the same expiration date (for example, the old one expires on October 5, 2023, the new one will also expire on October 5, 2023) and save it to the database. data, create new access tokens.

  10. The server returns a new access token and a new refresh token to the client.

  11. Client stores access token and new refresh token in device memory (cookie, local storage,...).

  12. The client can make subsequent requests with the new access token (the token refresh process takes place in the background so the client will not be logged out).

  13. When the user wants to log out, call the logout API, the server will delete the refresh token in the database, and at the same time the client must delete the access token and refresh token in the device memory.

  14. When the refresh token expires (or is invalid), the server will refuse the client's request. The client will now delete the access token and refresh token in the device memory and enter the logged out state.

The problem of inadequacy between theory and reality

The desire of authenticating with JWT is stateless, but above you notice that we save the refresh token in the database, this causes the server to store the user's state, meaning it is no longer stateless.

If we want more security, we cannot rigidly stay stateless, so combining stateless and stateful together seems more reasonable. Access Token is stateless, while Refresh Token is stateful.

This is the reason why I say there is a contradiction between theory and actual application, it is difficult to completely apply stateless to JWT in practice.

And there is another reason why I save refresh tokens in the database: refresh tokens last for a very long time. If I know who has lost refresh tokens, I can delete that user's refresh tokens in the database. This will make the system more secure.

Similarly, if I want to logout a certain user, I can also delete that person's refresh token in the database. After their access token expires, their attempt to refresh the token will not be successful and they will be logged out. The thing is that it's not instantaneous, you have to wait until the access token expires to log out.

We can also improve further by shortening the access token expiration time and using websocket to notify the client to logout immediately.


Answer ten thousand questions about JWT

Why create a new refresh token when we perform a token refresh?

Because if the refresh token is exposed, hackers can use it to get a new access token, which is quite dangerous. So even though the refresh token lasts a long time, every few minutes when the access token expires and the token refresh is performed, I create a new refresh token and delete the old refresh token.

Note that the new Refresh Token still retains the expiration date and time of the old Refresh Token . The old one expires on October 5, 2023, the new one will also expire on October 5, 2023.

This is called refresh token rotation .

How to revoke (revoke) an access token?

You can understand revoke here to mean revoke or disable

As I said above, the access token we designed is stateless, so there is no way to properly revoke immediately , we have to fight the fire through websocket and revoke refresh token.

If you want to revoke immediately, you must save the access token in the database. When you want to revoke, you can delete it in the database, but this will make the access token no longer stateless.

Are there ever two JWTs that overlap?

Have! If the payload and secret key are the same, the two JWTs will be the same.

Notice that in the JWT payload there will be a field iat(issued at) that is the time the JWT was created (this is the default field, unless you disable it). And iatit is measured in seconds.

So if we create 2 JWTs in the same second , then the fields iatof these 2 JWTs will be the same, plus the payload you transmit is the same, it will produce 2 identical JWTs.

Where should the access token and refresh token be saved on the client?

If you have a browser, you can save it in cookies or local storage, each has its own advantages and disadvantages. But cookies will have a "slight" advantage in terms of security.

For detailed comparison between local storage and cookies, I will have an article later.

If it is a mobile app, you can save it in the device's memory.

How to send access token to the server?

There will be 2 cases

  • Save cookie : It will automatically send every time a request comes to the server, no need to pay attention to it.

  • Save local storage : You add the header with the key Authorizationand value of Bearer <access_token>.

Why must Bearer be added before the access token?

Actually, whether you add it or not depends on how the backend server codes.

In order for the api authentication code to be standard, the server should require the client to add Bearerthe access token before it. The purpose of saying authentication is "Bearer Authentication" (token-based authentication).

Bearer Authentication is named after the word "bearer" which means "bearer" - i.e. whoever has this token will be considered the person with access to the requested resource. This is different from other authentication methods such as "Basic Authentication" or "Digest Authentication", which need to use user credentials.

Adding "Bearer" in front of the access token has several main purposes:

  1. Determine the authentication type : Provides information to the server about the authentication method the client wants to use. This helps the server process requests more accurately.

  2. Normality : Using the "Bearer" prefix helps ensure that applications and servers follow standard rules in how tokens are used and handled.

  3. Easy to differentiate : Adding "Bearer" helps differentiate between different types of tokens and authentication. For example, if the server supports multiple authentication methods, the word "Bearer" will help the server determine the type of authentication being used based on the token.

When using Bearer Authentication, the headers Authorizationin the HTTP request will look like this:

Authorization: Bearer your_access_token

When I log out, can I just delete the access token and refresh the token in the client's memory?

If you do not call the logout api but simply delete the access token and refresh the token in the client's memory, you will still be able to logout, but it will not be good for the system in terms of security. Because the refresh token still exists in the database, if hackers can get your refresh token, they can still get a new access token.

PreviousJWTNext.NET MVC

Last updated 11 months ago